File size: 18,030 Bytes
b7731cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
# Copyright 2013 by Zheng Ruan ([email protected]).
# All rights reserved.
# This code is part of the Biopython distribution and governed by its
# license.  Please see the LICENSE file that should have been included
# as part of this package.
"""Code for dealing with Codon Alignment.

CodonAlignment class is inherited from MultipleSeqAlignment class. This is
the core class to deal with codon alignment in biopython.
"""

from math import sqrt, erfc
import warnings

from Bio.Align import MultipleSeqAlignment
from Bio.SeqRecord import SeqRecord
from Bio.Data import CodonTable
from Bio import BiopythonWarning


from Bio.codonalign.codonseq import _get_codon_list, CodonSeq, cal_dn_ds


class CodonAlignment(MultipleSeqAlignment):
    """Codon Alignment class that inherits from MultipleSeqAlignment.

    >>> from Bio.SeqRecord import SeqRecord
    >>> a = SeqRecord(CodonSeq("AAAACGTCG"), id="Alpha")
    >>> b = SeqRecord(CodonSeq("AAA---TCG"), id="Beta")
    >>> c = SeqRecord(CodonSeq("AAAAGGTGG"), id="Gamma")
    >>> print(CodonAlignment([a, b, c]))
    CodonAlignment with 3 rows and 9 columns (3 codons)
    AAAACGTCG Alpha
    AAA---TCG Beta
    AAAAGGTGG Gamma

    """

    def __init__(self, records="", name=None):
        """Initialize the class."""
        MultipleSeqAlignment.__init__(self, records)

        # check the type of the alignment to be nucleotide
        for rec in self:
            if not isinstance(rec.seq, CodonSeq):
                raise TypeError(
                    "CodonSeq objects are expected in each SeqRecord in CodonAlignment"
                )

        if self.get_alignment_length() % 3 != 0:
            raise ValueError(
                "Alignment length is not a multiple of "
                "three (i.e. a whole number of codons)"
            )

    def __str__(self):
        """Return a multi-line string summary of the alignment.

        This output is indicated to be readable, but large alignment
        is shown truncated. A maximum of 20 rows (sequences) and
        60 columns (20 codons) are shown, with the record identifiers.
        This should fit nicely on a single screen. e.g.

        """
        rows = len(self._records)
        lines = [
            "CodonAlignment with %i rows and %i columns (%i codons)"
            % (rows, self.get_alignment_length(), self.get_aln_length())
        ]

        if rows <= 60:
            lines.extend([self._str_line(rec, length=60) for rec in self._records])
        else:
            lines.extend([self._str_line(rec, length=60) for rec in self._records[:18]])
            lines.append("...")
            lines.append(self._str_line(self._records[-1], length=60))
        return "\n".join(lines)

    def __getitem__(self, index):
        """Return a CodonAlignment object for single indexing."""
        if isinstance(index, int):
            return self._records[index]
        elif isinstance(index, slice):
            return CodonAlignment(self._records[index])
        elif len(index) != 2:
            raise TypeError("Invalid index type.")
        # Handle double indexing
        row_index, col_index = index
        if isinstance(row_index, int):
            return self._records[row_index][col_index]
        elif isinstance(col_index, int):
            return "".join(str(rec[col_index]) for rec in self._records[row_index])
        else:
            return MultipleSeqAlignment(
                rec[col_index] for rec in self._records[row_index]
            )

    def __add__(self, other):
        """Combine two codonalignments with the same number of rows by adding them.

        The method also allows to combine a CodonAlignment object with a
        MultipleSeqAlignment object. The following rules apply:

            * CodonAlignment + CodonAlignment -> CodonAlignment
            * CodonAlignment + MultipleSeqAlignment -> MultipleSeqAlignment
        """
        if isinstance(other, CodonAlignment):
            if len(self) != len(other):
                raise ValueError(
                    "When adding two alignments they must have the same length"
                    " (i.e. same number or rows)"
                )
            warnings.warn(
                "Please make sure the two CodonAlignment objects are sharing the same codon table. This is not checked by Biopython.",
                BiopythonWarning,
            )
            merged = (
                SeqRecord(seq=CodonSeq(left.seq + right.seq))
                for left, right in zip(self, other)
            )
            return CodonAlignment(merged)
        elif isinstance(other, MultipleSeqAlignment):
            if len(self) != len(other):
                raise ValueError(
                    "When adding two alignments they must have the same length"
                    " (i.e. same number or rows)"
                )
            return self.toMultipleSeqAlignment() + other
        else:
            raise TypeError(
                "Only CodonAlignment or MultipleSeqAlignment object can be"
                f" added with a CodonAlignment object. {object(other)} detected."
            )

    def get_aln_length(self):
        """Get alignment length."""
        return self.get_alignment_length() // 3

    def toMultipleSeqAlignment(self):
        """Convert the CodonAlignment to a MultipleSeqAlignment.

        Return a MultipleSeqAlignment containing all the
        SeqRecord in the CodonAlignment using Seq to store
        sequences
        """
        alignments = [SeqRecord(rec.seq.toSeq(), id=rec.id) for rec in self._records]
        return MultipleSeqAlignment(alignments)

    def get_dn_ds_matrix(self, method="NG86", codon_table=None):
        """Available methods include NG86, LWL85, YN00 and ML.

        Argument:
         - method       - Available methods include NG86, LWL85, YN00 and ML.
         - codon_table  - Codon table to use for forward translation.

        """
        from Bio.Phylo.TreeConstruction import DistanceMatrix as DM

        if codon_table is None:
            codon_table = CodonTable.generic_by_id[1]
        names = [i.id for i in self._records]
        size = len(self._records)
        dn_matrix = []
        ds_matrix = []
        for i in range(size):
            dn_matrix.append([])
            ds_matrix.append([])
            for j in range(i + 1):
                if i != j:
                    dn, ds = cal_dn_ds(
                        self._records[i],
                        self._records[j],
                        method=method,
                        codon_table=codon_table,
                    )
                    dn_matrix[i].append(dn)
                    ds_matrix[i].append(ds)
                else:
                    dn_matrix[i].append(0.0)
                    ds_matrix[i].append(0.0)
        dn_dm = DM(names, matrix=dn_matrix)
        ds_dm = DM(names, matrix=ds_matrix)
        return dn_dm, ds_dm

    def get_dn_ds_tree(
        self, dn_ds_method="NG86", tree_method="UPGMA", codon_table=None
    ):
        """Construct dn tree and ds tree.

        Argument:
         - dn_ds_method - Available methods include NG86, LWL85, YN00 and ML.
         - tree_method  - Available methods include UPGMA and NJ.

        """
        from Bio.Phylo.TreeConstruction import DistanceTreeConstructor

        if codon_table is None:
            codon_table = CodonTable.generic_by_id[1]
        dn_dm, ds_dm = self.get_dn_ds_matrix(
            method=dn_ds_method, codon_table=codon_table
        )
        dn_constructor = DistanceTreeConstructor()
        ds_constructor = DistanceTreeConstructor()
        if tree_method == "UPGMA":
            dn_tree = dn_constructor.upgma(dn_dm)
            ds_tree = ds_constructor.upgma(ds_dm)
        elif tree_method == "NJ":
            dn_tree = dn_constructor.nj(dn_dm)
            ds_tree = ds_constructor.nj(ds_dm)
        else:
            raise RuntimeError(
                f"Unknown tree method ({tree_method})."
                " Only NJ and UPGMA are accepted."
            )
        return dn_tree, ds_tree

    @classmethod
    def from_msa(cls, align):
        """Convert a MultipleSeqAlignment to CodonAlignment.

        Function to convert a MultipleSeqAlignment to CodonAlignment.
        It is the user's responsibility to ensure all the requirement
        needed by CodonAlignment is met.
        """
        rec = [SeqRecord(CodonSeq(str(i.seq)), id=i.id) for i in align._records]
        return cls(rec)


def mktest(codon_alns, codon_table=None, alpha=0.05):
    """McDonald-Kreitman test for neutrality.

    Implement the McDonald-Kreitman test for neutrality (PMID: 1904993)
    This method counts changes rather than sites
    (http://mkt.uab.es/mkt/help_mkt.asp).

    Arguments:
     - codon_alns  - list of CodonAlignment to compare (each
       CodonAlignment object corresponds to gene sampled from a species)

    Return the p-value of test result.
    """
    import copy

    if codon_table is None:
        codon_table = CodonTable.generic_by_id[1]
    if not all(isinstance(i, CodonAlignment) for i in codon_alns):
        raise TypeError("mktest accepts CodonAlignment list.")
    codon_aln_len = [i.get_alignment_length() for i in codon_alns]
    if len(set(codon_aln_len)) != 1:
        raise RuntimeError(
            "CodonAlignment object for mktest should be of equal length."
        )
    codon_num = codon_aln_len[0] // 3
    # prepare codon_dict (taking stop codon as an extra amino acid)
    codon_dict = copy.deepcopy(codon_table.forward_table)
    for stop in codon_table.stop_codons:
        codon_dict[stop] = "stop"
    # prepare codon_lst
    codon_lst = []
    for codon_aln in codon_alns:
        codon_lst.append([])
        for i in codon_aln:
            codon_lst[-1].append(_get_codon_list(i.seq))
    codon_set = []
    for i in range(codon_num):
        uniq_codons = []
        for j in codon_lst:
            uniq_codon = {k[i] for k in j}
            uniq_codons.append(uniq_codon)
        codon_set.append(uniq_codons)
    syn_fix, nonsyn_fix, syn_poly, nonsyn_poly = 0, 0, 0, 0
    G, nonsyn_G = _get_codon2codon_matrix(codon_table=codon_table)
    for i in codon_set:
        all_codon = i[0].union(*i[1:])
        if "-" in all_codon or len(all_codon) == 1:
            continue
        fix_or_not = all(len(k) == 1 for k in i)
        if fix_or_not:
            # fixed
            nonsyn_subgraph = _get_subgraph(all_codon, nonsyn_G)
            subgraph = _get_subgraph(all_codon, G)
            this_non = _count_replacement(all_codon, nonsyn_subgraph)
            this_syn = _count_replacement(all_codon, subgraph) - this_non
            nonsyn_fix += this_non
            syn_fix += this_syn
        else:
            # not fixed
            nonsyn_subgraph = _get_subgraph(all_codon, nonsyn_G)
            subgraph = _get_subgraph(all_codon, G)
            this_non = _count_replacement(all_codon, nonsyn_subgraph)
            this_syn = _count_replacement(all_codon, subgraph) - this_non
            nonsyn_poly += this_non
            syn_poly += this_syn
    return _G_test([syn_fix, nonsyn_fix, syn_poly, nonsyn_poly])


def _get_codon2codon_matrix(codon_table):
    """Get codon codon substitution matrix (PRIVATE).

    Elements in the matrix are number of synonymous and nonsynonymous
    substitutions required for the substitution.
    """
    base_tuple = ("A", "T", "C", "G")
    codons = [
        i
        for i in list(codon_table.forward_table.keys()) + codon_table.stop_codons
        if "U" not in i
    ]
    # set up codon_dict considering stop codons
    codon_dict = codon_table.forward_table
    for stop in codon_table.stop_codons:
        codon_dict[stop] = "stop"
    # count site
    num = len(codons)
    G = {}  # graph for substitution
    nonsyn_G = {}  # graph for nonsynonymous substitution
    graph = {}
    graph_nonsyn = {}
    for i, codon in enumerate(codons):
        graph[codon] = {}
        graph_nonsyn[codon] = {}
        for p, b in enumerate(codon):
            for j in base_tuple:
                tmp_codon = codon[0:p] + j + codon[p + 1 :]
                if codon_dict[codon] != codon_dict[tmp_codon]:
                    graph_nonsyn[codon][tmp_codon] = 1
                    graph[codon][tmp_codon] = 1
                else:
                    if codon != tmp_codon:
                        graph_nonsyn[codon][tmp_codon] = 0.1
                        graph[codon][tmp_codon] = 1
    for codon1 in codons:
        nonsyn_G[codon1] = {}
        G[codon1] = {}
        for codon2 in codons:
            if codon1 == codon2:
                nonsyn_G[codon1][codon2] = 0
                G[codon1][codon2] = 0
            else:
                nonsyn_G[codon1][codon2] = _dijkstra(graph_nonsyn, codon1, codon2)
                G[codon1][codon2] = _dijkstra(graph, codon1, codon2)
    return G, nonsyn_G


def _dijkstra(graph, start, end):
    """Dijkstra's algorithm Python implementation (PRIVATE).

    Algorithm adapted from
    http://thomas.pelletier.im/2010/02/dijkstras-algorithm-python-implementation/.
    However, an obvious bug in::

        if D[child_node] >(<) D[node] + child_value:

    is fixed.
    This function will return the distance between start and end.

    Arguments:
     - graph: Dictionary of dictionary (keys are vertices).
     - start: Start vertex.
     - end: End vertex.

    Output:
       List of vertices from the beginning to the end.

    """
    D = {}  # Final distances dict
    P = {}  # Predecessor dict
    # Fill the dicts with default values
    for node in graph.keys():
        D[node] = 100  # Vertices are unreachable
        P[node] = ""  # Vertices have no predecessors
    D[start] = 0  # The start vertex needs no move
    unseen_nodes = list(graph.keys())  # All nodes are unseen
    while len(unseen_nodes) > 0:
        # Select the node with the lowest value in D (final distance)
        shortest = None
        node = ""
        for temp_node in unseen_nodes:
            if shortest is None:
                shortest = D[temp_node]
                node = temp_node
            elif D[temp_node] < shortest:
                shortest = D[temp_node]
                node = temp_node
        # Remove the selected node from unseen_nodes
        unseen_nodes.remove(node)
        # For each child (ie: connected vertex) of the current node
        for child_node, child_value in graph[node].items():
            if D[child_node] > D[node] + child_value:
                D[child_node] = D[node] + child_value
                # To go to child_node, you have to go through node
                P[child_node] = node
        if node == end:
            break
    # Set a clean path
    path = []
    # We begin from the end
    node = end
    distance = 0
    # While we are not arrived at the beginning
    while not (node == start):
        if path.count(node) == 0:
            path.insert(0, node)  # Insert the predecessor of the current node
            node = P[node]  # The current node becomes its predecessor
        else:
            break
    path.insert(0, start)  # Finally, insert the start vertex
    for i in range(len(path) - 1):
        distance += graph[path[i]][path[i + 1]]
    return distance


def _count_replacement(codon_set, G):
    """Count replacement needed for a given codon_set (PRIVATE)."""
    from math import floor

    if len(codon_set) == 1:
        return 0, 0
    elif len(codon_set) == 2:
        codons = list(codon_set)
        return floor(G[codons[0]][codons[1]])
    else:
        codons = list(codon_set)
        return _prim(G)


def _prim(G):
    """Prim's algorithm to find minimum spanning tree (PRIVATE).

    Code is adapted from
    http://programmingpraxis.com/2010/04/09/minimum-spanning-tree-prims-algorithm/
    """
    from math import floor
    from collections import defaultdict
    from heapq import heapify, heappop, heappush

    nodes = []
    edges = []
    for i in G.keys():
        nodes.append(i)
        for j in G[i]:
            if (i, j, G[i][j]) not in edges and (j, i, G[i][j]) not in edges:
                edges.append((i, j, G[i][j]))
    conn = defaultdict(list)
    for n1, n2, c in edges:
        conn[n1].append((c, n1, n2))
        conn[n2].append((c, n2, n1))
    mst = []  # minimum spanning tree
    used = set(nodes[0])
    usable_edges = conn[nodes[0]][:]
    heapify(usable_edges)
    while usable_edges:
        cost, n1, n2 = heappop(usable_edges)
        if n2 not in used:
            used.add(n2)
            mst.append((n1, n2, cost))
            for e in conn[n2]:
                if e[2] not in used:
                    heappush(usable_edges, e)
    length = 0
    for p in mst:
        length += floor(p[2])
    return length


def _get_subgraph(codons, G):
    """Get the subgraph that contains all codons in list (PRIVATE)."""
    subgraph = {}
    for i in codons:
        subgraph[i] = {}
        for j in codons:
            if i != j:
                subgraph[i][j] = G[i][j]
    return subgraph


def _G_test(site_counts):
    """G test for 2x2 contingency table (PRIVATE).

    Arguments:
     - site_counts - [syn_fix, nonsyn_fix, syn_poly, nonsyn_poly]

    >>> print("%0.6f" % _G_test([17, 7, 42, 2]))
    0.004924
    """
    # TODO:
    #   Apply continuity correction for Chi-square test.
    from math import log

    G = 0
    tot = sum(site_counts)
    tot_syn = site_counts[0] + site_counts[2]
    tot_non = site_counts[1] + site_counts[3]
    tot_fix = sum(site_counts[:2])
    tot_poly = sum(site_counts[2:])
    exp = [
        tot_fix * tot_syn / tot,
        tot_fix * tot_non / tot,
        tot_poly * tot_syn / tot,
        tot_poly * tot_non / tot,
    ]
    for obs, ex in zip(site_counts, exp):
        G += obs * log(obs / ex)
    # with only 1 degree of freedom for a 2x2 table,
    # the cumulative chi-square distribution reduces to a simple form:
    return erfc(sqrt(G))


if __name__ == "__main__":
    from Bio._utils import run_doctest

    run_doctest()