Spaces:
No application file
No application file
File size: 27,885 Bytes
b7731cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 |
# Copyright 2013 by David Arenillas and Anthony Mathelier. All rights reserved.
# This code is part of the Biopython distribution and governed by its
# license. Please see the LICENSE file that should have been included
# as part of this package.
"""Provides read access to a JASPAR5 formatted database.
This modules requires MySQLdb to be installed.
Example, substitute the your database credentials as
appropriate::
from Bio.motifs.jaspar.db import JASPAR5
JASPAR_DB_HOST = "hostname.example.org"
JASPAR_DB_NAME = "JASPAR2018"
JASPAR_DB_USER = "guest"
JASPAR_DB_PASS = "guest"
jdb = JASPAR5(
host=JASPAR_DB_HOST,
name=JASPAR_DB_NAME,
user=JASPAR_DB_USER,
password=JASPAR_DB_PASS
)
ets1 = jdb.fetch_motif_by_id('MA0098')
print(ets1)
TF name ETS1
Matrix ID MA0098.3
Collection CORE
TF class ['Tryptophan cluster factors']
TF family ['Ets-related factors']
Species 9606
Taxonomic group vertebrates
Accession ['P14921']
Data type used HT-SELEX
Medline 20517297
PAZAR ID TF0000070
Comments Data is from Taipale HTSELEX DBD (2013)
Matrix:
0 1 2 3 4 5 6 7 8 9
A: 2683.00 180.00 425.00 0.00 0.00 2683.00 2683.00 1102.00 89.00 803.00
C: 210.00 2683.00 2683.00 21.00 0.00 0.00 9.00 21.00 712.00 401.00
G: 640.00 297.00 7.00 2683.00 2683.00 0.00 31.00 1580.00 124.00 1083.00
T: 241.00 22.00 0.00 0.00 12.00 0.00 909.00 12.00 1970.00 396.00
motifs = jdb.fetch_motifs(
collection = 'CORE',
tax_group = ['vertebrates', 'insects'],
tf_class = 'Homeo domain factors',
tf_family = ['TALE-type homeo domain factors', 'POU domain factors'],
min_ic = 12
)
for motif in motifs:
pass # do something with the motif
"""
import warnings
from Bio import BiopythonWarning
from Bio import MissingPythonDependencyError
try:
import MySQLdb as mdb
except ImportError:
raise MissingPythonDependencyError(
"Install MySQLdb if you want to use Bio.motifs.jaspar.db"
)
from Bio.motifs import jaspar, matrix
JASPAR_DFLT_COLLECTION = "CORE"
class JASPAR5:
"""Class representing a JASPAR5 database.
Class representing a JASPAR5 DB. The methods within are loosely based
on the perl TFBS::DB::JASPAR5 module.
Note: We will only implement reading of JASPAR motifs from the DB.
Unlike the perl module, we will not attempt to implement any methods to
store JASPAR motifs or create a new DB at this time.
"""
def __init__(self, host=None, name=None, user=None, password=None):
"""Construct a JASPAR5 instance and connect to specified DB.
Arguments:
- host - host name of the the JASPAR DB server
- name - name of the JASPAR database
- user - user name to connect to the JASPAR DB
- password - JASPAR DB password
"""
self.name = name
self.host = host
self.user = user
self.password = password
self.dbh = mdb.connect(host, user, password, name)
def __str__(self):
"""Return a string represention of the JASPAR5 DB connection."""
return rf"{self.user}\@{self.host}:{self.name}"
def fetch_motif_by_id(self, id):
"""Fetch a single JASPAR motif from the DB by its JASPAR matrix ID.
Example id 'MA0001.1'.
Arguments:
- id - JASPAR matrix ID. This may be a fully specified ID including
the version number (e.g. MA0049.2) or just the base ID (e.g.
MA0049). If only a base ID is provided, the latest version is
returned.
Returns:
- A Bio.motifs.jaspar.Motif object
**NOTE:** The perl TFBS module allows you to specify the type of matrix
to return (PFM, PWM, ICM) but matrices are always stored in JASPAR as
PFMs so this does not really belong here. Once a PFM is fetched the
pwm() and pssm() methods can be called to return the normalized and
log-odds matrices.
"""
# separate stable ID and version number
(base_id, version) = jaspar.split_jaspar_id(id)
if not version:
# if ID contains no version portion, fetch the latest version
version = self._fetch_latest_version(base_id)
# fetch internal JASPAR matrix ID - also a check for validity
int_id = None
if version:
int_id = self._fetch_internal_id(base_id, version)
# fetch JASPAR motif using internal ID
motif = None
if int_id:
motif = self._fetch_motif_by_internal_id(int_id)
return motif
def fetch_motifs_by_name(self, name):
"""Fetch a list of JASPAR motifs from a JASPAR DB by the given TF name(s).
Arguments:
name - a single name or list of names
Returns:
A list of Bio.motifs.jaspar.Motif objects
Notes:
Names are not guaranteed to be unique. There may be more than one
motif with the same name. Therefore even if name specifies a single
name, a list of motifs is returned. This just calls
self.fetch_motifs(collection = None, tf_name = name).
This behaviour is different from the TFBS perl module's
get_Matrix_by_name() method which always returns a single matrix,
issuing a warning message and returning the first matrix retrieved
in the case where multiple matrices have the same name.
"""
return self.fetch_motifs(collection=None, tf_name=name)
def fetch_motifs(
self,
collection=JASPAR_DFLT_COLLECTION,
tf_name=None,
tf_class=None,
tf_family=None,
matrix_id=None,
tax_group=None,
species=None,
pazar_id=None,
data_type=None,
medline=None,
min_ic=0,
min_length=0,
min_sites=0,
all=False,
all_versions=False,
):
"""Fetch jaspar.Record (list) of motifs using selection criteria.
Arguments::
Except where obvious, all selection criteria arguments may be
specified as a single value or a list of values. Motifs must
meet ALL the specified selection criteria to be returned with
the precedent exceptions noted below.
all - Takes precedent of all other selection criteria.
Every motif is returned. If 'all_versions' is also
specified, all versions of every motif are returned,
otherwise just the latest version of every motif is
returned.
matrix_id - Takes precedence over all other selection criteria
except 'all'. Only motifs with the given JASPAR
matrix ID(s) are returned. A matrix ID may be
specified as just a base ID or full JASPAR IDs
including version number. If only a base ID is
provided for specific motif(s), then just the latest
version of those motif(s) are returned unless
'all_versions' is also specified.
collection - Only motifs from the specified JASPAR collection(s)
are returned. NOTE - if not specified, the collection
defaults to CORE for all other selection criteria
except 'all' and 'matrix_id'. To apply the other
selection criteria across all JASPAR collections,
explicitly set collection=None.
tf_name - Only motifs with the given name(s) are returned.
tf_class - Only motifs of the given TF class(es) are returned.
tf_family - Only motifs from the given TF families are returned.
tax_group - Only motifs belonging to the given taxonomic
supergroups are returned (e.g. 'vertebrates',
'insects', 'nematodes' etc.)
species - Only motifs derived from the given species are
returned. Species are specified as taxonomy IDs.
data_type - Only motifs generated with the given data type (e.g.
('ChIP-seq', 'PBM', 'SELEX' etc.) are returned.
NOTE - must match exactly as stored in the database.
pazar_id - Only motifs with the given PAZAR TF ID are returned.
medline - Only motifs with the given medline (PubmMed IDs) are
returned.
min_ic - Only motifs whose profile matrices have at least this
information content (specificty) are returned.
min_length - Only motifs whose profiles are of at least this
length are returned.
min_sites - Only motifs compiled from at least these many binding
sites are returned.
all_versions- Unless specified, just the latest version of motifs
determined by the other selection criteria are
returned. Otherwise all versions of the selected
motifs are returned.
Returns:
- A Bio.motifs.jaspar.Record (list) of motifs.
"""
# Fetch the internal IDs of the motifs using the criteria provided
int_ids = self._fetch_internal_id_list(
collection=collection,
tf_name=tf_name,
tf_class=tf_class,
tf_family=tf_family,
matrix_id=matrix_id,
tax_group=tax_group,
species=species,
pazar_id=pazar_id,
data_type=data_type,
medline=medline,
all=all,
all_versions=all_versions,
)
record = jaspar.Record()
"""
Now further filter motifs returned above based on any specified
matrix specific criteria.
"""
for int_id in int_ids:
motif = self._fetch_motif_by_internal_id(int_id)
# Filter motifs to those with matrix IC greater than min_ic
if min_ic:
if motif.pssm.mean() < min_ic:
continue
# Filter motifs to those with minimum length of min_length
if min_length:
if motif.length < min_length:
continue
# XXX We could also supply a max_length filter.
"""
Filter motifs to those composed of at least this many sites.
The perl TFBS module assumes column sums may be different but
this should be strictly enforced here we will ignore this and
just use the first column sum.
"""
if min_sites:
num_sites = sum(motif.counts[nt][0] for nt in motif.alphabet)
if num_sites < min_sites:
continue
record.append(motif)
return record
def _fetch_latest_version(self, base_id):
"""Get the latest version number for the given base_id (PRIVATE)."""
cur = self.dbh.cursor()
cur.execute(
"select VERSION from MATRIX where BASE_id = %s order by VERSION"
" desc limit 1",
(base_id,),
)
row = cur.fetchone()
latest = None
if row:
latest = row[0]
else:
warnings.warn(
"Failed to fetch latest version number for JASPAR motif"
f" with base ID '{base_id}'. No JASPAR motif with this"
" base ID appears to exist in the database.",
BiopythonWarning,
)
return latest
def _fetch_internal_id(self, base_id, version):
"""Fetch the internal id for a base id + version (PRIVATE).
Also checks if this combo exists or not.
"""
cur = self.dbh.cursor()
cur.execute(
"select id from MATRIX where BASE_id = %s and VERSION = %s",
(base_id, version),
)
row = cur.fetchone()
int_id = None
if row:
int_id = row[0]
else:
warnings.warn(
"Failed to fetch internal database ID for JASPAR motif"
f" with matrix ID '{base_id}.{version}'. No JASPAR motif"
" with this matrix ID appears to exist.",
BiopythonWarning,
)
return int_id
def _fetch_motif_by_internal_id(self, int_id):
"""Fetch basic motif information (PRIVATE)."""
cur = self.dbh.cursor()
cur.execute(
"select BASE_ID, VERSION, COLLECTION, NAME from MATRIX where id = %s",
(int_id,),
)
row = cur.fetchone()
# This should never happen as it is an internal method. If it does
# we should probably raise an exception
if not row:
warnings.warn(
f"Could not fetch JASPAR motif with internal ID = {int_id}",
BiopythonWarning,
)
return None
base_id = row[0]
version = row[1]
collection = row[2]
name = row[3]
matrix_id = "".join([base_id, ".", str(version)])
# fetch the counts matrix
counts = self._fetch_counts_matrix(int_id)
# Create new JASPAR motif
motif = jaspar.Motif(matrix_id, name, collection=collection, counts=counts)
# fetch species
cur.execute("select TAX_ID from MATRIX_SPECIES where id = %s", (int_id,))
tax_ids = []
rows = cur.fetchall()
for row in rows:
tax_ids.append(row[0])
# Many JASPAR motifs (especially those not in the CORE collection)
# do not have taxonomy IDs. So this warning would get annoying.
# if not tax_ids:
# warnings.warn("Could not fetch any taxonomy IDs for JASPAR motif"
# " {0}".format(motif.matrix_id), BiopythonWarning)
motif.species = tax_ids
# fetch protein accession numbers
cur.execute("select ACC FROM MATRIX_PROTEIN where id = %s", (int_id,))
accs = []
rows = cur.fetchall()
for row in rows:
accs.append(row[0])
# Similarly as for taxonomy IDs, it would get annoying to print
# warnings for JASPAR motifs which do not have accession numbers.
motif.acc = accs
# fetch remaining annotation as tags from the ANNOTATION table
cur.execute("select TAG, VAL from MATRIX_ANNOTATION where id = %s", (int_id,))
rows = cur.fetchall()
# Since JASPAR 2018 tf_family and tf_class are return as array.
tf_family = []
tf_class = []
for row in rows:
attr = row[0]
val = row[1]
if attr == "class":
tf_class.append(val)
elif attr == "family":
tf_family.append(val)
elif attr == "tax_group":
motif.tax_group = val
elif attr == "type":
motif.data_type = val
elif attr == "pazar_tf_id":
motif.pazar_id = val
elif attr == "medline":
motif.medline = val
elif attr == "comment":
motif.comment = val
else:
# TODO If we were to implement additional abitrary tags
# motif.tag(attr, val)
pass
motif.tf_family = tf_family
motif.tf_class = tf_class
return motif
def _fetch_counts_matrix(self, int_id):
"""Fetch the counts matrix from the JASPAR DB by the internal ID (PRIVATE).
Returns a Bio.motifs.matrix.GenericPositionMatrix
"""
counts = {}
cur = self.dbh.cursor()
for base in "ACGT":
base_counts = []
cur.execute(
"select val from MATRIX_DATA where ID = %s and row = %s order by col",
(int_id, base),
)
rows = cur.fetchall()
for row in rows:
base_counts.append(row[0])
counts[base] = [float(x) for x in base_counts]
return matrix.GenericPositionMatrix("ACGT", counts)
def _fetch_internal_id_list(
self,
collection=JASPAR_DFLT_COLLECTION,
tf_name=None,
tf_class=None,
tf_family=None,
matrix_id=None,
tax_group=None,
species=None,
pazar_id=None,
data_type=None,
medline=None,
all=False,
all_versions=False,
):
"""Fetch list of internal JASPAR motif IDs.
Fetch a list of internal JASPAR motif IDs based on various passed
parameters which may then be used to fetch the rest of the motif data.
Caller:
fetch_motifs()
Arguments:
See arguments sections of fetch_motifs()
Returns:
A list of internal JASPAR motif IDs which match the given
selection criteria arguments.
Build an SQL query based on the selection arguments provided.
1: First add table joins and sub-clauses for criteria corresponding to
named fields from the MATRIX and MATRIX_SPECIES tables such as
collection, matrix ID, name, species etc.
2: Then add joins/sub-clauses for tag/value parameters from the
MATRIX_ANNOTATION table.
For the surviving matrices, the responsibility to do matrix-based
feature filtering such as ic, number of sites etc, fall on the
calling fetch_motifs() method.
"""
int_ids = []
cur = self.dbh.cursor()
"""
Special case 1: fetch ALL motifs. Highest priority.
Ignore all other selection arguments.
"""
if all:
cur.execute("select ID from MATRIX")
rows = cur.fetchall()
for row in rows:
int_ids.append(row[0])
return int_ids
"""
Special case 2: fetch specific motifs by their JASPAR IDs. This
has higher priority than any other except the above 'all' case.
Ignore all other selection arguments.
"""
if matrix_id:
"""
These might be either stable IDs or stable_ID.version.
If just stable ID and if all_versions == 1, return all versions,
otherwise just the latest
"""
if all_versions:
for id in matrix_id:
# ignore version here, this is a stupidity filter
(base_id, version) = jaspar.split_jaspar_id(id)
cur.execute("select ID from MATRIX where BASE_ID = %s", (base_id,))
rows = cur.fetchall()
for row in rows:
int_ids.append(row[0])
else:
# only the latest version, or the requested version
for id in matrix_id:
(base_id, version) = jaspar.split_jaspar_id(id)
if not version:
version = self._fetch_latest_version(base_id)
int_id = None
if version:
int_id = self._fetch_internal_id(base_id, version)
if int_id:
int_ids.append(int_id)
return int_ids
tables = ["MATRIX m"]
where_clauses = []
# Select by MATRIX.COLLECTION
if collection:
if isinstance(collection, list):
# Multiple collections passed in as a list
clause = "m.COLLECTION in ('"
clause = "".join([clause, "','".join(collection)])
clause = "".join([clause, "')"])
else:
# A single collection - typical usage
clause = "m.COLLECTION = '%s'" % collection
where_clauses.append(clause)
# Select by MATRIX.NAME
if tf_name:
if isinstance(tf_name, list):
# Multiple names passed in as a list
clause = "m.NAME in ('"
clause = "".join([clause, "','".join(tf_name)])
clause = "".join([clause, "')"])
else:
# A single name
clause = "m.NAME = '%s'" % tf_name
where_clauses.append(clause)
# Select by MATRIX_SPECIES.TAX_ID
if species:
tables.append("MATRIX_SPECIES ms")
where_clauses.append("m.ID = ms.ID")
"""
NOTE: species are numeric taxonomy IDs but stored as varchars
in the DB.
"""
if isinstance(species, list):
# Multiple tax IDs passed in as a list
clause = "ms.TAX_ID in ('"
clause = "".join([clause, "','".join(str(s) for s in species)])
clause = "".join([clause, "')"])
else:
# A single tax ID
clause = "ms.TAX_ID = '%s'" % species
where_clauses.append(clause)
"""
Tag based selection from MATRIX_ANNOTATION
Differs from perl TFBS module in that the matrix class explicitly
has a tag attribute corresponding to the tags in the database. This
provides tremendous flexibility in adding new tags to the DB and
being able to select based on those tags with out adding new code.
In the JASPAR Motif class we have elected to use specific attributes
for the most commonly used tags and here correspondingly only allow
selection on these attributes.
The attributes corresponding to the tags for which selection is
provided are:
Attribute Tag
tf_class class
tf_family family
pazar_id pazar_tf_id
medline medline
data_type type
tax_group tax_group
"""
# Select by TF class(es) (MATRIX_ANNOTATION.TAG="class")
if tf_class:
tables.append("MATRIX_ANNOTATION ma1")
where_clauses.append("m.ID = ma1.ID")
clause = "ma1.TAG = 'class'"
if isinstance(tf_class, list):
# A list of TF classes
clause = "".join([clause, " and ma1.VAL in ('"])
clause = "".join([clause, "','".join(tf_class)])
clause = "".join([clause, "')"])
else:
# A single TF class
clause = "".join([clause, " and ma1.VAL = '%s' " % tf_class])
where_clauses.append(clause)
# Select by TF families (MATRIX_ANNOTATION.TAG="family")
if tf_family:
tables.append("MATRIX_ANNOTATION ma2")
where_clauses.append("m.ID = ma2.ID")
clause = "ma2.TAG = 'family'"
if isinstance(tf_family, list):
# A list of TF families
clause = "".join([clause, " and ma2.VAL in ('"])
clause = "".join([clause, "','".join(tf_family)])
clause = "".join([clause, "')"])
else:
# A single TF family
clause = "".join([clause, " and ma2.VAL = '%s' " % tf_family])
where_clauses.append(clause)
# Select by PAZAR TF ID(s) (MATRIX_ANNOTATION.TAG="pazar_tf_id")
if pazar_id:
tables.append("MATRIX_ANNOTATION ma3")
where_clauses.append("m.ID = ma3.ID")
clause = "ma3.TAG = 'pazar_tf_id'"
if isinstance(pazar_id, list):
# A list of PAZAR IDs
clause = "".join([clause, " and ma3.VAL in ('"])
clause = "".join([clause, "','".join(pazar_id)])
clause = "".join([clause, "')"])
else:
# A single PAZAR ID
clause = "".join([" and ma3.VAL = '%s' " % pazar_id])
where_clauses.append(clause)
# Select by PubMed ID(s) (MATRIX_ANNOTATION.TAG="medline")
if medline:
tables.append("MATRIX_ANNOTATION ma4")
where_clauses.append("m.ID = ma4.ID")
clause = "ma4.TAG = 'medline'"
if isinstance(medline, list):
# A list of PubMed IDs
clause = "".join([clause, " and ma4.VAL in ('"])
clause = "".join([clause, "','".join(medline)])
clause = "".join([clause, "')"])
else:
# A single PubMed ID
clause = "".join([" and ma4.VAL = '%s' " % medline])
where_clauses.append(clause)
# Select by data type(s) used to compile the matrix
# (MATRIX_ANNOTATION.TAG="type")
if data_type:
tables.append("MATRIX_ANNOTATION ma5")
where_clauses.append("m.ID = ma5.ID")
clause = "ma5.TAG = 'type'"
if isinstance(data_type, list):
# A list of data types
clause = "".join([clause, " and ma5.VAL in ('"])
clause = "".join([clause, "','".join(data_type)])
clause = "".join([clause, "')"])
else:
# A single data type
clause = "".join([" and ma5.VAL = '%s' " % data_type])
where_clauses.append(clause)
# Select by taxonomic supergroup(s) (MATRIX_ANNOTATION.TAG="tax_group")
if tax_group:
tables.append("MATRIX_ANNOTATION ma6")
where_clauses.append("m.ID = ma6.ID")
clause = "ma6.TAG = 'tax_group'"
if isinstance(tax_group, list):
# A list of tax IDs
clause = "".join([clause, " and ma6.VAL in ('"])
clause = "".join([clause, "','".join(tax_group)])
clause = "".join([clause, "')"])
else:
# A single tax ID
clause = "".join([clause, " and ma6.VAL = '%s' " % tax_group])
where_clauses.append(clause)
sql = "".join(["select distinct(m.ID) from ", ", ".join(tables)])
if where_clauses:
sql = "".join([sql, " where ", " and ".join(where_clauses)])
cur.execute(sql)
rows = cur.fetchall()
for row in rows:
id = row[0]
if all_versions:
int_ids.append(id)
else:
# is the latest version?
if self._is_latest_version(id):
int_ids.append(id)
if len(int_ids) < 1:
warnings.warn(
"Zero motifs returned with current select criteria", BiopythonWarning
)
return int_ids
def _is_latest_version(self, int_id):
"""Check if the internal ID represents the latest JASPAR matrix (PRIVATE).
Does this internal ID represent the latest version of the JASPAR
matrix (collapse on base ids)
"""
cur = self.dbh.cursor()
cur.execute(
"select count(*) from MATRIX where "
"BASE_ID = (select BASE_ID from MATRIX where ID = %s) "
"and VERSION > (select VERSION from MATRIX where ID = %s)",
(int_id, int_id),
)
row = cur.fetchone()
count = row[0]
if count == 0:
# no matrices with higher version ID and same base id
return True
return False
|