Spaces:
No application file
No application file
File size: 20,572 Bytes
b7731cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 |
# Copyright 2013 by Michiel de Hoon. All rights reserved.
#
# This file is part of the Biopython distribution and governed by your
# choice of the "Biopython License Agreement" or the "BSD 3-Clause License".
# Please see the LICENSE file that should have been included as part of this
# package.
"""Support for various forms of sequence motif matrices.
Implementation of frequency (count) matrices, position-weight matrices,
and position-specific scoring matrices.
"""
import math
import numbers
try:
import numpy as np
except ImportError:
from Bio import MissingPythonDependencyError
raise MissingPythonDependencyError(
"Install NumPy if you want to use Bio.motifs.matrix."
)
from Bio.Seq import Seq
from . import _pwm
class GenericPositionMatrix(dict):
"""Base class for the support of position matrix operations."""
def __init__(self, alphabet, values):
"""Initialize the class."""
self.length = None
for letter in alphabet:
if self.length is None:
self.length = len(values[letter])
elif self.length != len(values[letter]):
raise Exception("data has inconsistent lengths")
self[letter] = list(values[letter])
self.alphabet = alphabet
def __str__(self):
"""Return a string containing nucleotides and counts of the alphabet in the Matrix."""
words = ["%6d" % i for i in range(self.length)]
line = " " + " ".join(words)
lines = [line]
for letter in self.alphabet:
words = ["%6.2f" % value for value in self[letter]]
line = "%c: " % letter + " ".join(words)
lines.append(line)
text = "\n".join(lines) + "\n"
return text
def __getitem__(self, key):
"""Return the position matrix of index key."""
if isinstance(key, tuple):
if len(key) == 2:
key1, key2 = key
if isinstance(key1, slice):
start1, stop1, stride1 = key1.indices(len(self.alphabet))
indices1 = range(start1, stop1, stride1)
letters1 = [self.alphabet[i] for i in indices1]
dim1 = 2
elif isinstance(key1, numbers.Integral):
letter1 = self.alphabet[key1]
dim1 = 1
elif isinstance(key1, tuple):
letters1 = [self.alphabet[i] for i in key1]
dim1 = 2
elif isinstance(key1, str):
if len(key1) == 1:
letter1 = key1
dim1 = 1
else:
raise KeyError(key1)
else:
raise KeyError("Cannot understand key %s" % key1)
if isinstance(key2, slice):
start2, stop2, stride2 = key2.indices(self.length)
indices2 = range(start2, stop2, stride2)
dim2 = 2
elif isinstance(key2, numbers.Integral):
index2 = key2
dim2 = 1
else:
raise KeyError("Cannot understand key %s" % key2)
if dim1 == 1 and dim2 == 1:
return dict.__getitem__(self, letter1)[index2]
elif dim1 == 1 and dim2 == 2:
values = dict.__getitem__(self, letter1)
return tuple(values[index2] for index2 in indices2)
elif dim1 == 2 and dim2 == 1:
d = {}
for letter1 in letters1:
d[letter1] = dict.__getitem__(self, letter1)[index2]
return d
else:
d = {}
for letter1 in letters1:
values = dict.__getitem__(self, letter1)
d[letter1] = [values[_] for _ in indices2]
if sorted(letters1) == self.alphabet:
return self.__class__(self.alphabet, d)
else:
return d
elif len(key) == 1:
key = key[0]
else:
raise KeyError("keys should be 1- or 2-dimensional")
if isinstance(key, slice):
start, stop, stride = key.indices(len(self.alphabet))
indices = range(start, stop, stride)
letters = [self.alphabet[i] for i in indices]
dim = 2
elif isinstance(key, numbers.Integral):
letter = self.alphabet[key]
dim = 1
elif isinstance(key, tuple):
letters = [self.alphabet[i] for i in key]
dim = 2
elif isinstance(key, str):
if len(key) == 1:
letter = key
dim = 1
else:
raise KeyError(key)
else:
raise KeyError("Cannot understand key %s" % key)
if dim == 1:
return dict.__getitem__(self, letter)
elif dim == 2:
d = {}
for letter in letters:
d[letter] = dict.__getitem__(self, letter)
return d
else:
raise RuntimeError("Should not get here")
@property
def consensus(self):
"""Return the consensus sequence."""
sequence = ""
for i in range(self.length):
maximum = -math.inf
for letter in self.alphabet:
count = self[letter][i]
if count > maximum:
maximum = count
sequence_letter = letter
sequence += sequence_letter
return Seq(sequence)
@property
def anticonsensus(self):
"""Return the anticonsensus sequence."""
sequence = ""
for i in range(self.length):
minimum = math.inf
for letter in self.alphabet:
count = self[letter][i]
if count < minimum:
minimum = count
sequence_letter = letter
sequence += sequence_letter
return Seq(sequence)
@property
def degenerate_consensus(self):
"""Return the degenerate consensus sequence."""
# Following the rules adapted from
# D. R. Cavener: "Comparison of the consensus sequence flanking
# translational start sites in Drosophila and vertebrates."
# Nucleic Acids Research 15(4): 1353-1361. (1987).
# The same rules are used by TRANSFAC.
degenerate_nucleotide = {
"A": "A",
"C": "C",
"G": "G",
"T": "T",
"AC": "M",
"AG": "R",
"AT": "W",
"CG": "S",
"CT": "Y",
"GT": "K",
"ACG": "V",
"ACT": "H",
"AGT": "D",
"CGT": "B",
"ACGT": "N",
}
sequence = ""
for i in range(self.length):
def get(nucleotide):
return self[nucleotide][i] # noqa: B023
nucleotides = sorted(self, key=get, reverse=True)
counts = [self[c][i] for c in nucleotides]
# Follow the Cavener rules:
if counts[0] > sum(counts[1:]) and counts[0] > 2 * counts[1]:
key = nucleotides[0]
elif 4 * sum(counts[:2]) > 3 * sum(counts):
key = "".join(sorted(nucleotides[:2]))
elif counts[3] == 0:
key = "".join(sorted(nucleotides[:3]))
else:
key = "ACGT"
nucleotide = degenerate_nucleotide.get(key, key)
sequence += nucleotide
return Seq(sequence)
@property
def gc_content(self):
"""Compute the fraction GC content."""
alphabet = self.alphabet
gc_total = 0.0
total = 0.0
for i in range(self.length):
for letter in alphabet:
if letter in "CG":
gc_total += self[letter][i]
total += self[letter][i]
return gc_total / total
def reverse_complement(self):
"""Compute reverse complement."""
values = {}
if self.alphabet == "ACGU":
values["A"] = self["U"][::-1]
values["U"] = self["A"][::-1]
else:
values["A"] = self["T"][::-1]
values["T"] = self["A"][::-1]
values["G"] = self["C"][::-1]
values["C"] = self["G"][::-1]
alphabet = self.alphabet
return self.__class__(alphabet, values)
class FrequencyPositionMatrix(GenericPositionMatrix):
"""Class for the support of frequency calculations on the Position Matrix."""
def normalize(self, pseudocounts=None):
"""Create and return a position-weight matrix by normalizing the counts matrix.
If pseudocounts is None (default), no pseudocounts are added
to the counts.
If pseudocounts is a number, it is added to the counts before
calculating the position-weight matrix.
Alternatively, the pseudocounts can be a dictionary with a key
for each letter in the alphabet associated with the motif.
"""
counts = {}
if pseudocounts is None:
for letter in self.alphabet:
counts[letter] = [0.0] * self.length
elif isinstance(pseudocounts, dict):
for letter in self.alphabet:
counts[letter] = [float(pseudocounts[letter])] * self.length
else:
for letter in self.alphabet:
counts[letter] = [float(pseudocounts)] * self.length
for i in range(self.length):
for letter in self.alphabet:
counts[letter][i] += self[letter][i]
# Actual normalization is done in the PositionWeightMatrix initializer
return PositionWeightMatrix(self.alphabet, counts)
class PositionWeightMatrix(GenericPositionMatrix):
"""Class for the support of weight calculations on the Position Matrix."""
def __init__(self, alphabet, counts):
"""Initialize the class."""
GenericPositionMatrix.__init__(self, alphabet, counts)
for i in range(self.length):
total = sum(self[letter][i] for letter in alphabet)
for letter in alphabet:
self[letter][i] /= total
for letter in alphabet:
self[letter] = tuple(self[letter])
def log_odds(self, background=None):
"""Return the Position-Specific Scoring Matrix.
The Position-Specific Scoring Matrix (PSSM) contains the log-odds
scores computed from the probability matrix and the background
probabilities. If the background is None, a uniform background
distribution is assumed.
"""
values = {}
alphabet = self.alphabet
if background is None:
background = dict.fromkeys(self.alphabet, 1.0)
else:
background = dict(background)
total = sum(background.values())
for letter in alphabet:
background[letter] /= total
values[letter] = []
for i in range(self.length):
for letter in alphabet:
b = background[letter]
if b > 0:
p = self[letter][i]
if p > 0:
logodds = math.log(p / b, 2)
else:
logodds = -math.inf
else:
p = self[letter][i]
if p > 0:
logodds = math.inf
else:
logodds = math.nan
values[letter].append(logodds)
pssm = PositionSpecificScoringMatrix(alphabet, values)
return pssm
class PositionSpecificScoringMatrix(GenericPositionMatrix):
"""Class for the support of Position Specific Scoring Matrix calculations."""
def calculate(self, sequence):
"""Return the PWM score for a given sequence for all positions.
Notes:
- the sequence can only be a DNA sequence
- the search is performed only on one strand
- if the sequence and the motif have the same length, a single
number is returned
- otherwise, the result is a one-dimensional numpy array
"""
# TODO - Code itself tolerates ambiguous bases (as NaN).
if sorted(self.alphabet) != ["A", "C", "G", "T"]:
raise ValueError(
"PSSM has wrong alphabet: %s - Use only with DNA motifs" % self.alphabet
)
# NOTE: The C code handles mixed case input as this could be large
# (e.g. contig or chromosome), so requiring it be all upper or lower
# case would impose an overhead to allocate the extra memory.
try:
sequence = bytes(sequence)
except TypeError: # str
try:
sequence = bytes(sequence, "ASCII")
except TypeError:
raise ValueError(
"sequence should be a Seq, MutableSeq, string, or bytes-like object"
) from None
except UnicodeEncodeError:
raise ValueError(
"sequence should contain ASCII characters only"
) from None
except Exception:
raise ValueError(
"sequence should be a Seq, MutableSeq, string, or bytes-like object"
) from None
n = len(sequence)
m = self.length
# Create the numpy arrays here; the C module then does not rely on numpy
# Use a float32 for the scores array to save space
scores = np.empty(n - m + 1, np.float32)
logodds = np.array(
[[self[letter][i] for letter in "ACGT"] for i in range(m)], float
)
_pwm.calculate(sequence, logodds, scores)
if len(scores) == 1:
return scores[0]
else:
return scores
def search(self, sequence, threshold=0.0, both=True, chunksize=10**6):
"""Find hits with PWM score above given threshold.
A generator function, returning found hits in the given sequence
with the pwm score higher than the threshold.
"""
sequence = sequence.upper()
seq_len = len(sequence)
motif_l = self.length
chunk_starts = np.arange(0, seq_len, chunksize)
if both:
rc = self.reverse_complement()
for chunk_start in chunk_starts:
subseq = sequence[chunk_start : chunk_start + chunksize + motif_l - 1]
pos_scores = self.calculate(subseq)
pos_ind = pos_scores >= threshold
pos_positions = np.where(pos_ind)[0] + chunk_start
pos_scores = pos_scores[pos_ind]
if both:
neg_scores = rc.calculate(subseq)
neg_ind = neg_scores >= threshold
neg_positions = np.where(neg_ind)[0] + chunk_start
neg_scores = neg_scores[neg_ind]
else:
neg_positions = np.empty((0), dtype=int)
neg_scores = np.empty((0), dtype=int)
chunk_positions = np.append(pos_positions, neg_positions - seq_len)
chunk_scores = np.append(pos_scores, neg_scores)
order = np.argsort(np.append(pos_positions, neg_positions))
chunk_positions = chunk_positions[order]
chunk_scores = chunk_scores[order]
yield from zip(chunk_positions, chunk_scores)
@property
def max(self):
"""Maximal possible score for this motif.
returns the score computed for the consensus sequence.
"""
score = 0.0
letters = self.alphabet
for position in range(0, self.length):
score += max(self[letter][position] for letter in letters)
return score
@property
def min(self):
"""Minimal possible score for this motif.
returns the score computed for the anticonsensus sequence.
"""
score = 0.0
letters = self.alphabet
for position in range(0, self.length):
score += min(self[letter][position] for letter in letters)
return score
@property
def gc_content(self):
"""Compute the GC-ratio."""
raise Exception("Cannot compute the %GC composition of a PSSM")
def mean(self, background=None):
"""Return expected value of the score of a motif."""
if background is None:
background = dict.fromkeys(self.alphabet, 1.0)
else:
background = dict(background)
total = sum(background.values())
for letter in self.alphabet:
background[letter] /= total
sx = 0.0
for i in range(self.length):
for letter in self.alphabet:
logodds = self[letter, i]
if math.isnan(logodds):
continue
if math.isinf(logodds) and logodds < 0:
continue
b = background[letter]
p = b * math.pow(2, logodds)
sx += p * logodds
return sx
def std(self, background=None):
"""Return standard deviation of the score of a motif."""
if background is None:
background = dict.fromkeys(self.alphabet, 1.0)
else:
background = dict(background)
total = sum(background.values())
for letter in self.alphabet:
background[letter] /= total
variance = 0.0
for i in range(self.length):
sx = 0.0
sxx = 0.0
for letter in self.alphabet:
logodds = self[letter, i]
if math.isnan(logodds):
continue
if math.isinf(logodds) and logodds < 0:
continue
b = background[letter]
p = b * math.pow(2, logodds)
sx += p * logodds
sxx += p * logodds * logodds
sxx -= sx * sx
variance += sxx
variance = max(variance, 0) # to avoid roundoff problems
return math.sqrt(variance)
def dist_pearson(self, other):
"""Return the similarity score based on pearson correlation for the given motif against self.
We use the Pearson's correlation of the respective probabilities.
"""
if self.alphabet != other.alphabet:
raise ValueError("Cannot compare motifs with different alphabets")
max_p = -2
for offset in range(-self.length + 1, other.length):
if offset < 0:
p = self.dist_pearson_at(other, -offset)
else: # offset>=0
p = other.dist_pearson_at(self, offset)
if max_p < p:
max_p = p
max_o = -offset
return 1 - max_p, max_o
def dist_pearson_at(self, other, offset):
"""Return the similarity score based on pearson correlation at the given offset."""
letters = self.alphabet
sx = 0.0 # \sum x
sy = 0.0 # \sum y
sxx = 0.0 # \sum x^2
sxy = 0.0 # \sum x \cdot y
syy = 0.0 # \sum y^2
norm = max(self.length, offset + other.length) * len(letters)
for pos in range(min(self.length - offset, other.length)):
xi = [self[letter, pos + offset] for letter in letters]
yi = [other[letter, pos] for letter in letters]
sx += sum(xi)
sy += sum(yi)
sxx += sum(x * x for x in xi)
sxy += sum(x * y for x, y in zip(xi, yi))
syy += sum(y * y for y in yi)
sx /= norm
sy /= norm
sxx /= norm
sxy /= norm
syy /= norm
numerator = sxy - sx * sy
denominator = math.sqrt((sxx - sx * sx) * (syy - sy * sy))
return numerator / denominator
def distribution(self, background=None, precision=10**3):
"""Calculate the distribution of the scores at the given precision."""
from .thresholds import ScoreDistribution
if background is None:
background = dict.fromkeys(self.alphabet, 1.0)
else:
background = dict(background)
total = sum(background.values())
for letter in self.alphabet:
background[letter] /= total
return ScoreDistribution(precision=precision, pssm=self, background=background)
|