aakash0017's picture
Upload folder using huggingface_hub
b7731cd
# Copyright 2022 by Michiel de Hoon. All rights reserved.
#
# This file is part of the Biopython distribution and governed by your
# choice of the "Biopython License Agreement" or the "BSD 3-Clause License".
# Please see the LICENSE file that should have been included as part of this
# package.
"""Bio.Align support for the "sam" pairwise alignment format.
The Sequence Alignment/Map (SAM) format, created by Heng Li and Richard Durbin
at the Wellcome Trust Sanger Institute, stores a series of alignments to the
genome in a single file. Typically they are used for next-generation sequencing
data. SAM files store the alignment positions for mapped sequences, and may
also store the aligned sequences and other information associated with the
sequence.
See http://www.htslib.org/ for more information.
You are expected to use this module via the Bio.Align functions.
Coordinates in the SAM format are defined in terms of one-based start
positions; the parser converts these to zero-based coordinates to be consistent
with Python and other alignment formats.
"""
from itertools import chain
import copy
try:
import numpy
except ImportError:
from Bio import MissingPythonDependencyError
raise MissingPythonDependencyError(
"Please install numpy if you want to use Bio.Align. "
"See http://www.numpy.org/"
) from None
from Bio.Align import Alignment
from Bio.Align import interfaces
from Bio.Seq import Seq, reverse_complement, UndefinedSequenceError
from Bio.SeqRecord import SeqRecord
class AlignmentWriter(interfaces.AlignmentWriter):
"""Alignment file writer for the Sequence Alignment/Map (SAM) file format."""
fmt = "SAM"
def __init__(self, target, md=False):
"""Create an AlignmentWriter object.
Arguments:
- md - If True, calculate the MD tag from the alignment and include it
in the output.
If False (default), do not include the MD tag in the output.
"""
super().__init__(target)
self.md = md
def write_header(self, alignments):
"""Write the SAM header."""
try:
metadata = alignments.metadata
except AttributeError:
metadata = {}
try:
targets = alignments.targets
except AttributeError:
targets = {}
values = metadata.get("HD")
if values is not None:
# if HD is present, then VN is required and must come first
fields = ["@HD", "VN:%s" % values["VN"]]
for key, value in values.items():
if key == "VN":
continue
fields.append("%s:%s" % (key, value))
line = "\t".join(fields) + "\n"
self.stream.write(line)
for record in targets:
fields = ["@SQ"]
fields.append("SN:%s" % record.id)
length = len(record.seq)
fields.append("LN:%d" % length)
for key, value in record.annotations.items():
if key == "alternate_locus":
fields.append("AH:%s" % value)
elif key == "names":
fields.append("AN:%s" % ",".join(value))
elif key == "assembly":
fields.append("AS:%s" % value)
elif key == "MD5":
fields.append("M5:%s" % value)
elif key == "species":
fields.append("SP:%s" % value)
elif key == "topology":
assert value in ("linear", "circular")
fields.append("PP:%s" % value)
elif key == "URI":
fields.append("UR:%s" % value)
else:
fields.append("%s:%s" % (key[:2], value))
try:
description = record.description
except AttributeError:
pass
else:
if description != "<unknown description>":
fields.append("DS:%s" % description)
line = "\t".join(fields) + "\n"
self.stream.write(line)
for tag, rows in metadata.items():
if tag == "HD": # already written
continue
for row in rows:
fields = ["@" + tag]
for key, value in row.items():
fields.append("%s:%s" % (key, value))
line = "\t".join(fields) + "\n"
self.stream.write(line)
def format_alignment(self, alignment, md=None):
"""Return a string with a single alignment formatted as one SAM line."""
if not isinstance(alignment, Alignment):
raise TypeError("Expected an Alignment object")
coordinates = alignment.coordinates.transpose()
target, query = alignment.sequences
hard_clip_left = None
hard_clip_right = None
try:
qName = query.id
except AttributeError:
qName = "query"
qual = "*"
else:
try:
hard_clip_left = query.annotations["hard_clip_left"]
except (AttributeError, KeyError):
pass
try:
hard_clip_right = query.annotations["hard_clip_right"]
except (AttributeError, KeyError):
pass
try:
qual = query.letter_annotations["phred_quality"]
except (AttributeError, KeyError):
qual = "*"
query = query.seq
qSize = len(query)
try:
rName = target.id
except AttributeError:
rName = "target"
else:
target = target.seq
if coordinates[0, 1] < coordinates[-1, 1]: # mapped to forward strand
flag = 0
else: # mapped to reverse strand
flag = 16
query = reverse_complement(query, inplace=False)
coordinates = numpy.array(coordinates)
coordinates[:, 1] = qSize - coordinates[:, 1]
hard_clip_left, hard_clip_right = hard_clip_right, hard_clip_left
try:
query = bytes(query)
except TypeError: # string
pass
except UndefinedSequenceError:
query = "*"
else:
query = str(query, "ASCII")
tStart, qStart = coordinates[0, :]
pos = tStart
cigar = ""
if hard_clip_left is not None:
cigar += "%dH" % hard_clip_left
if qStart > 0:
cigar += "%dS" % qStart
try:
operations = alignment.operations
except AttributeError:
operations = None
for tEnd, qEnd in coordinates[1:, :]:
tCount = tEnd - tStart
qCount = qEnd - qStart
if tCount == 0:
cigar += "%dI" % qCount # insertion to the reference
qStart = qEnd
elif qCount == 0:
cigar += "%dD" % tCount # deletion from the reference
tStart = tEnd
else:
if tCount != qCount:
raise ValueError("Unequal step sizes in alignment")
cigar += "%dM" % tCount
tStart = tEnd
qStart = qEnd
else:
for operation, (tEnd, qEnd) in zip(operations, coordinates[1:, :]):
tCount = tEnd - tStart
qCount = qEnd - qStart
if tCount == 0:
assert operation == ord("I")
cigar += "%dI" % qCount # insertion to the reference
qStart = qEnd
elif qCount == 0:
if operation == ord("N"):
cigar += "%dN" % tCount # skipped region from the reference
elif operation == ord("D"):
cigar += "%dD" % tCount # deletion from the reference
else:
raise ValueError(f"Unexpected operation {operation}")
tStart = tEnd
else:
if tCount != qCount:
raise ValueError("Unequal step sizes in alignment")
assert operation == ord("M")
cigar += "%dM" % tCount
tStart = tEnd
qStart = qEnd
if qEnd < qSize:
cigar += "%dS" % (qSize - qEnd)
if hard_clip_right is not None:
cigar += "%dH" % hard_clip_right
try:
mapq = alignment.mapq
except AttributeError:
mapq = 255 # not available
rNext = "*"
pNext = 0
tLen = 0
fields = [
qName,
str(flag),
rName,
str(pos + 1), # 1-based coordinates
str(mapq),
cigar,
rNext,
str(pNext),
str(tLen),
query,
qual,
]
if md is None:
md = self.md
if md is True:
if query == "*":
raise ValueError("requested MD tag with undefined sequence")
# calculate the MD tag from the alignment coordinates and sequences
tStart, qStart = coordinates[0, :]
number = 0
md = ""
if operations is None:
for tEnd, qEnd in coordinates[1:, :]:
tCount = tEnd - tStart
qCount = qEnd - qStart
if tCount == 0:
# insertion to the reference
qStart = qEnd
elif qCount == 0:
if True:
# deletion from the reference
if number:
md += str(number)
number = 0
md += "^" + target[tStart:tEnd]
tStart = tEnd
else:
# alignment match
if tCount != qCount:
raise ValueError("Unequal step sizes in alignment")
for tc, qc in zip(target[tStart:tEnd], query[qStart:qEnd]):
if tc == qc:
number += 1
else:
md += str(number) + tc
number = 0
tStart = tEnd
qStart = qEnd
if number:
md += str(number)
else:
for operation, (tEnd, qEnd) in zip(operations, coordinates[1:, :]):
tCount = tEnd - tStart
qCount = qEnd - qStart
if tCount == 0:
# insertion to the reference
qStart = qEnd
elif qCount == 0:
if operation != ord("N"):
# deletion from the reference
if number:
md += str(number)
number = 0
md += "^" + target[tStart:tEnd]
tStart = tEnd
else:
# alignment match
if tCount != qCount:
raise ValueError("Unequal step sizes in alignment")
for tc, qc in zip(target[tStart:tEnd], query[qStart:qEnd]):
if tc == qc:
number += 1
else:
md += str(number) + tc
number = 0
tStart = tEnd
qStart = qEnd
if number:
md += str(number)
field = "MD:Z:%s" % md
fields.append(field)
try:
score = alignment.score
except AttributeError:
pass
else:
field = "AS:i:%d" % int(round(score))
fields.append(field)
try:
annotations = alignment.annotations
except AttributeError:
pass
else:
for key, value in annotations.items():
if isinstance(value, int):
datatype = "i"
value = str(value)
elif isinstance(value, float):
datatype = "f"
value = str(value)
elif isinstance(value, str):
if len(value) == 1:
datatype = "A"
else:
datatype = "Z"
elif isinstance(value, bytes):
datatype = "H"
value = "".join(map(str, value))
elif isinstance(value, numpy.array):
datatype = "B"
if numpy.issubdtype(value.dtype, numpy.integer):
pass
elif numpy.issubdtype(value.dtype, float):
pass
else:
raise ValueError(
f"Array of incompatible data type {value.dtype} in annotation '{key}'"
)
value = "".join(map(str, value))
field = f"{key}:{datatype}:{value}"
fields.append(field)
line = "\t".join(fields) + "\n"
return line
class AlignmentIterator(interfaces.AlignmentIterator):
"""Alignment iterator for Sequence Alignment/Map (SAM) files.
Each line in the file contains one genomic alignment, which are loaded
and returned incrementally. The following columns are stored as attributes
of the alignment:
- flag: The FLAG combination of bitwise flags;
- mapq: Mapping Quality (only stored if available)
- rnext: Reference sequence name of the primary alignment of the next read
in the alignment (only stored if available)
- pnext: Zero-based position of the primary alignment of the next read in
the template (only stored if available)
- tlen: signed observed template length (only stored if available)
Other information associated with the alignment by its tags are stored in
the annotations attribute of each alignment.
Any hard clipping (clipped sequences not present in the query sequence)
are stored as 'hard_clip_left' and 'hard_clip_right' in the annotations
dictionary attribute of the query sequence record.
The sequence quality, if available, is stored as 'phred_quality' in the
letter_annotations dictionary attribute of the query sequence record.
"""
fmt = "SAM"
def _read_header(self, stream):
self.metadata = {}
self.targets = []
for line in stream:
if not line.startswith("@"):
self._line = line
break
fields = line[1:].strip().split("\t")
tag = fields[0]
values = {}
if tag == "SQ":
annotations = {}
description = None
for field in fields[1:]:
key, value = field.split(":", 1)
assert len(key) == 2
if key == "SN":
rname = value
elif key == "LN":
length = int(value)
elif key == "AH":
annotations["alternate_locus"] = value
elif key == "AN":
annotations["names"] = value.split(",")
elif key == "AS":
annotations["assembly"] = value
elif key == "DS":
description = value
elif key == "M5":
annotations["MD5"] = value
elif key == "SP":
annotations["species"] = value
elif key == "TP":
assert value in ("linear", "circular")
annotations["topology"] = value
elif key == "UR":
annotations["URI"] = value
else:
annotations[key] = value
sequence = Seq(None, length=length)
record = SeqRecord(
sequence, id=rname, description="", annotations=annotations
)
if description is not None:
record.description = description
self.targets.append(record)
else:
for field in fields[1:]:
key, value = field.split(":", 1)
assert len(key) == 2
values[key] = value
if tag == "HD":
self.metadata[tag] = values
else:
if tag not in self.metadata:
self.metadata[tag] = []
self.metadata[tag].append(values)
self._target_indices = {
record.id: index for index, record in enumerate(self.targets)
}
def _read_next_alignment(self, stream):
try:
line = self._line
except AttributeError:
lines = stream
else:
lines = chain([line], stream)
del self._line
for line in lines:
fields = line.split()
if len(fields) < 11:
raise ValueError(
"line has %d columns; expected at least 11" % len(fields)
)
qname = fields[0]
flag = int(fields[1])
rname = fields[2]
target_pos = int(fields[3]) - 1
mapq = int(fields[4])
cigar = fields[5]
rnext = fields[6]
pnext = int(fields[7]) - 1
tlen = int(fields[8])
query = fields[9]
qual = fields[10]
md = None
score = None
annotations = {}
for field in fields[11:]:
tag, datatype, value = field.split(":", 2)
if tag == "AS":
assert datatype == "i"
score = int(value)
elif tag == "MD":
assert datatype == "Z"
md = value
else:
if datatype == "i":
value = int(value)
elif datatype == "f":
value = float(value)
elif datatype in ("A", "Z"): # string
pass
elif datatype == "H":
n = len(value)
value = bytes(int(value[i : i + 2]) for i in range(0, n, 2))
elif datatype == "B":
letter = value[0]
value = value[1:].split(",")
if letter in "cCsSiI":
dtype = int
elif letter == "f":
dtype = float
else:
raise ValueError(
f"Unknown number type '{letter}' in tag '{field}'"
)
value = numpy.array(value, dtype)
annotations[tag] = value
if flag & 0x10:
strand = "-"
else:
strand = "+"
hard_clip_left = None
hard_clip_right = None
store_operations = False
if flag & 0x4: # unmapped
target = None
coordinates = None
elif md is None:
query_pos = 0
coordinates = [[target_pos, query_pos]]
number = ""
operations = bytearray()
for letter in cigar:
if letter == "M":
# M: alignment match
length = int(number)
target_pos += length
query_pos += length
elif letter in "=X":
# =: sequence match
# X: sequence mismatch
length = int(number)
target_pos += length
query_pos += length
store_operations = True
elif letter == "I":
# I: insertion to the reference
length = int(number)
query_pos += length
elif letter == "S":
# S: soft clipping
length = int(number)
if query_pos == 0:
coordinates[0][1] += length
query_pos += length
number = ""
continue
elif letter == "D":
# D: deletion from the reference
length = int(number)
target_pos += length
elif letter == "N":
# N: skipped region from the reference
length = int(number)
target_pos += length
store_operations = True
elif letter == "H": # hard clipping
if query_pos == 0:
hard_clip_left = int(number)
else:
hard_clip_right = int(number)
number = ""
continue
elif letter == "P": # padding
raise NotImplementedError(
"padding operator is not yet implemented"
)
else:
number += letter
continue
coordinates.append([target_pos, query_pos])
operations.append(ord(letter))
number = ""
index = self._target_indices.get(rname)
if index is None:
if self.targets:
raise ValueError(f"Found target {rname} missing from header")
target = SeqRecord(None, id=rname, description="")
else:
target = self.targets[index]
else:
query_pos = 0
coordinates = [[target_pos, query_pos]]
seq = query
target = ""
starts = [target_pos]
size = 0
sizes = []
number = ""
operations = bytearray()
for letter in cigar:
if letter in "M":
# M: alignment match
length = int(number)
target_pos += length
query_pos += length
target += seq[:length]
seq = seq[length:]
size += length
elif letter in "=X":
# =: sequence match
# X: sequence mismatch
length = int(number)
target_pos += length
query_pos += length
target += seq[:length]
seq = seq[length:]
size += length
store_operations = True
elif letter == "I":
# I: insertion to the reference
length = int(number)
query_pos += length
seq = seq[length:]
elif letter == "S":
# S: soft clipping
length = int(number)
if query_pos == 0:
coordinates[0][1] += length
query_pos += length
seq = seq[length:]
number = ""
continue
elif letter == "D": # deletion from the reference
length = int(number)
target_pos += length
size += length
starts.append(target_pos)
sizes.append(size)
size = 0
elif letter == "N": # skipped region from the reference
length = int(number)
target_pos += length
starts.append(target_pos)
sizes.append(size)
size = 0
store_operations = True
elif letter == "H":
# hard clipping (clipped sequences not present in sequence)
if query_pos == 0:
hard_clip_left = int(number)
else:
hard_clip_right = int(number)
number = ""
continue
elif letter == "P": # padding
raise NotImplementedError(
"padding operator is not yet implemented"
)
else:
number += letter
continue
coordinates.append([target_pos, query_pos])
operations.append(ord(letter))
number = ""
sizes.append(size)
seq = target
target = ""
number = ""
letters = iter(md)
for letter in letters:
if letter in "ACGTNacgtn":
if number:
number = int(number)
target += seq[:number]
seq = seq[number:]
number = ""
target += letter
seq = seq[1:]
elif letter == "^":
if number:
number = int(number)
target += seq[:number]
seq = seq[number:]
number = ""
for letter in letters:
if letter not in "ACGTNacgtn":
break
target += letter
else:
break
number = letter
else:
number += letter
if number:
number = int(number)
target += seq[:number]
seq = target
index = self._target_indices[rname]
target = copy.deepcopy(self.targets[index])
length = len(target.seq)
data = {}
index = 0
for start, size in zip(starts, sizes):
data[start] = seq[index : index + size]
index += size
target.seq = Seq(data, length=length)
if coordinates is not None:
coordinates = numpy.array(coordinates).transpose()
if strand == "-":
coordinates[1, :] = query_pos - coordinates[1, :]
if query == "*":
length = query_pos
sequence = Seq(None, length=length)
else:
sequence = Seq(query)
if not (flag & 0x4): # not unmapped
assert len(query) == query_pos
if strand == "-":
sequence = sequence.reverse_complement()
query = SeqRecord(sequence, id=qname, description="")
if strand == "-":
hard_clip_left, hard_clip_right = hard_clip_right, hard_clip_left
if hard_clip_left is not None:
query.annotations["hard_clip_left"] = hard_clip_left
if hard_clip_right is not None:
query.annotations["hard_clip_right"] = hard_clip_right
if qual != "*":
query.letter_annotations["phred_quality"] = qual
records = [target, query]
alignment = Alignment(records, coordinates)
alignment.flag = flag
if mapq != 255:
alignment.mapq = mapq
if rnext == "=":
alignment.rnext = rname
elif rnext != "*":
alignment.rnext = rnext
if pnext >= 0:
alignment.pnext = pnext
if tlen != 0:
alignment.tlen = tlen
if score is not None:
alignment.score = score
if annotations:
alignment.annotations = annotations
if hard_clip_left is not None:
alignment.hard_clip_left = hard_clip_left
if hard_clip_right is not None:
alignment.hard_clip_right = hard_clip_right
if store_operations:
alignment.operations = operations
return alignment