aakash0017's picture
Upload folder using huggingface_hub
b7731cd
# Copyright (C) 2002, Thomas Hamelryck ([email protected])
#
# This file is part of the Biopython distribution and governed by your
# choice of the "Biopython License Agreement" or the "BSD 3-Clause License".
# Please see the LICENSE file that should have been included as part of this
# package.
"""Half-sphere exposure and coordination number calculation."""
import warnings
from math import pi
from Bio.PDB.AbstractPropertyMap import AbstractPropertyMap
from Bio.PDB.Polypeptide import CaPPBuilder, is_aa
from Bio.PDB.vectors import rotaxis
class _AbstractHSExposure(AbstractPropertyMap):
"""Abstract class to calculate Half-Sphere Exposure (HSE).
The HSE can be calculated based on the CA-CB vector, or the pseudo CB-CA
vector based on three consecutive CA atoms. This is done by two separate
subclasses.
"""
def __init__(self, model, radius, offset, hse_up_key, hse_down_key, angle_key=None):
"""Initialize class.
:param model: model
:type model: L{Model}
:param radius: HSE radius
:type radius: float
:param offset: number of flanking residues that are ignored in the
calculation of the number of neighbors
:type offset: int
:param hse_up_key: key used to store HSEup in the entity.xtra attribute
:type hse_up_key: string
:param hse_down_key: key used to store HSEdown in the entity.xtra attribute
:type hse_down_key: string
:param angle_key: key used to store the angle between CA-CB and CA-pCB in
the entity.xtra attribute
:type angle_key: string
"""
assert offset >= 0
# For PyMOL visualization
self.ca_cb_list = []
ppb = CaPPBuilder()
ppl = ppb.build_peptides(model)
hse_map = {}
hse_list = []
hse_keys = []
for pp1 in ppl:
for i in range(0, len(pp1)):
if i == 0:
r1 = None
else:
r1 = pp1[i - 1]
r2 = pp1[i]
if i == len(pp1) - 1:
r3 = None
else:
r3 = pp1[i + 1]
# This method is provided by the subclasses to calculate HSE
result = self._get_cb(r1, r2, r3)
if result is None:
# Missing atoms, or i==0, or i==len(pp1)-1
continue
pcb, angle = result
hse_u = 0
hse_d = 0
ca2 = r2["CA"].get_vector()
for pp2 in ppl:
for j in range(0, len(pp2)):
if pp1 is pp2 and abs(i - j) <= offset:
# neighboring residues in the chain are ignored
continue
ro = pp2[j]
if not is_aa(ro) or not ro.has_id("CA"):
continue
cao = ro["CA"].get_vector()
d = cao - ca2
if d.norm() < radius:
if d.angle(pcb) < (pi / 2):
hse_u += 1
else:
hse_d += 1
res_id = r2.get_id()
chain_id = r2.get_parent().get_id()
# Fill the 3 data structures
hse_map[(chain_id, res_id)] = (hse_u, hse_d, angle)
hse_list.append((r2, (hse_u, hse_d, angle)))
hse_keys.append((chain_id, res_id))
# Add to xtra
r2.xtra[hse_up_key] = hse_u
r2.xtra[hse_down_key] = hse_d
if angle_key:
r2.xtra[angle_key] = angle
AbstractPropertyMap.__init__(self, hse_map, hse_keys, hse_list)
def _get_cb(self, r1, r2, r3):
return NotImplemented
def _get_gly_cb_vector(self, residue):
"""Return a pseudo CB vector for a Gly residue (PRIVATE).
The pseudoCB vector is centered at the origin.
CB coord=N coord rotated over -120 degrees
along the CA-C axis.
"""
try:
n_v = residue["N"].get_vector()
c_v = residue["C"].get_vector()
ca_v = residue["CA"].get_vector()
except Exception:
return None
# center at origin
n_v = n_v - ca_v
c_v = c_v - ca_v
# rotation around c-ca over -120 deg
rot = rotaxis(-pi * 120.0 / 180.0, c_v)
cb_at_origin_v = n_v.left_multiply(rot)
# move back to ca position
cb_v = cb_at_origin_v + ca_v
# This is for PyMol visualization
self.ca_cb_list.append((ca_v, cb_v))
return cb_at_origin_v
class HSExposureCA(_AbstractHSExposure):
"""Class to calculate HSE based on the approximate CA-CB vectors.
Uses three consecutive CA positions.
"""
def __init__(self, model, radius=12, offset=0):
"""Initialize class.
:param model: the model that contains the residues
:type model: L{Model}
:param radius: radius of the sphere (centred at the CA atom)
:type radius: float
:param offset: number of flanking residues that are ignored
in the calculation of the number of neighbors
:type offset: int
"""
_AbstractHSExposure.__init__(
self,
model,
radius,
offset,
"EXP_HSE_A_U",
"EXP_HSE_A_D",
"EXP_CB_PCB_ANGLE",
)
def _get_cb(self, r1, r2, r3):
"""Calculate approx CA-CB direction (PRIVATE).
Calculate the approximate CA-CB direction for a central
CA atom based on the two flanking CA positions, and the angle
with the real CA-CB vector.
The CA-CB vector is centered at the origin.
:param r1, r2, r3: three consecutive residues
:type r1, r2, r3: L{Residue}
"""
if r1 is None or r3 is None:
return None
try:
ca1 = r1["CA"].get_vector()
ca2 = r2["CA"].get_vector()
ca3 = r3["CA"].get_vector()
except Exception:
return None
# center
d1 = ca2 - ca1
d3 = ca2 - ca3
d1.normalize()
d3.normalize()
# bisection
b = d1 + d3
b.normalize()
# Add to ca_cb_list for drawing
self.ca_cb_list.append((ca2, b + ca2))
if r2.has_id("CB"):
cb = r2["CB"].get_vector()
cb_ca = cb - ca2
cb_ca.normalize()
angle = cb_ca.angle(b)
elif r2.get_resname() == "GLY":
cb_ca = self._get_gly_cb_vector(r2)
if cb_ca is None:
angle = None
else:
angle = cb_ca.angle(b)
else:
angle = None
# vector b is centered at the origin!
return b, angle
def pcb_vectors_pymol(self, filename="hs_exp.py"):
"""Write PyMol script for visualization.
Write a PyMol script that visualizes the pseudo CB-CA directions
at the CA coordinates.
:param filename: the name of the pymol script file
:type filename: string
"""
if not self.ca_cb_list:
warnings.warn("Nothing to draw.", RuntimeWarning)
return
with open(filename, "w") as fp:
fp.write("from pymol.cgo import *\n")
fp.write("from pymol import cmd\n")
fp.write("obj=[\n")
fp.write("BEGIN, LINES,\n")
fp.write(f"COLOR, {1.0:.2f}, {1.0:.2f}, {1.0:.2f},\n")
for (ca, cb) in self.ca_cb_list:
x, y, z = ca.get_array()
fp.write(f"VERTEX, {x:.2f}, {y:.2f}, {z:.2f},\n")
x, y, z = cb.get_array()
fp.write(f"VERTEX, {x:.2f}, {y:.2f}, {z:.2f},\n")
fp.write("END]\n")
fp.write("cmd.load_cgo(obj, 'HS')\n")
class HSExposureCB(_AbstractHSExposure):
"""Class to calculate HSE based on the real CA-CB vectors."""
def __init__(self, model, radius=12, offset=0):
"""Initialize class.
:param model: the model that contains the residues
:type model: L{Model}
:param radius: radius of the sphere (centred at the CA atom)
:type radius: float
:param offset: number of flanking residues that are ignored
in the calculation of the number of neighbors
:type offset: int
"""
_AbstractHSExposure.__init__(
self, model, radius, offset, "EXP_HSE_B_U", "EXP_HSE_B_D"
)
def _get_cb(self, r1, r2, r3):
"""Calculate CB-CA vector (PRIVATE).
:param r1, r2, r3: three consecutive residues (only r2 is used)
:type r1, r2, r3: L{Residue}
"""
if r2.get_resname() == "GLY":
return self._get_gly_cb_vector(r2), 0.0
else:
if r2.has_id("CB") and r2.has_id("CA"):
vcb = r2["CB"].get_vector()
vca = r2["CA"].get_vector()
return (vcb - vca), 0.0
return None
class ExposureCN(AbstractPropertyMap):
"""Residue exposure as number of CA atoms around its CA atom."""
def __init__(self, model, radius=12.0, offset=0):
"""Initialize class.
A residue's exposure is defined as the number of CA atoms around
that residue's CA atom. A dictionary is returned that uses a L{Residue}
object as key, and the residue exposure as corresponding value.
:param model: the model that contains the residues
:type model: L{Model}
:param radius: radius of the sphere (centred at the CA atom)
:type radius: float
:param offset: number of flanking residues that are ignored in
the calculation of the number of neighbors
:type offset: int
"""
assert offset >= 0
ppb = CaPPBuilder()
ppl = ppb.build_peptides(model)
fs_map = {}
fs_list = []
fs_keys = []
for pp1 in ppl:
for i in range(0, len(pp1)):
fs = 0
r1 = pp1[i]
if not is_aa(r1) or not r1.has_id("CA"):
continue
ca1 = r1["CA"]
for pp2 in ppl:
for j in range(0, len(pp2)):
if pp1 is pp2 and abs(i - j) <= offset:
continue
r2 = pp2[j]
if not is_aa(r2) or not r2.has_id("CA"):
continue
ca2 = r2["CA"]
d = ca2 - ca1
if d < radius:
fs += 1
res_id = r1.get_id()
chain_id = r1.get_parent().get_id()
# Fill the 3 data structures
fs_map[(chain_id, res_id)] = fs
fs_list.append((r1, fs))
fs_keys.append((chain_id, res_id))
# Add to xtra
r1.xtra["EXP_CN"] = fs
AbstractPropertyMap.__init__(self, fs_map, fs_keys, fs_list)