aakash0017's picture
Upload folder using huggingface_hub
b7731cd
# Copyright (C) 2002, 2004 Thomas Hamelryck ([email protected])
# All rights reserved.
#
# This file is part of the Biopython distribution and governed by your
# choice of the "Biopython License Agreement" or the "BSD 3-Clause License".
# Please see the LICENSE file that should have been included as part of this
# package.
"""Fast atom neighbor lookup using a KD tree (implemented in C)."""
import numpy
from Bio.PDB.PDBExceptions import PDBException
from Bio.PDB.Selection import unfold_entities, entity_levels, uniqueify
class NeighborSearch:
"""Class for neighbor searching.
This class can be used for two related purposes:
1. To find all atoms/residues/chains/models/structures within radius
of a given query position.
2. To find all atoms/residues/chains/models/structures that are within
a fixed radius of each other.
NeighborSearch makes use of the KDTree class implemented in C for speed.
"""
def __init__(self, atom_list, bucket_size=10):
"""Create the object.
Arguments:
- atom_list - list of atoms. This list is used in the queries.
It can contain atoms from different structures.
- bucket_size - bucket size of KD tree. You can play around
with this to optimize speed if you feel like it.
"""
from Bio.PDB.kdtrees import KDTree
self.atom_list = atom_list
# get the coordinates
coord_list = [a.get_coord() for a in atom_list]
# to Nx3 array of type float
self.coords = numpy.array(coord_list, dtype="d")
assert bucket_size > 1
assert self.coords.shape[1] == 3
self.kdt = KDTree(self.coords, bucket_size)
# Private
def _get_unique_parent_pairs(self, pair_list):
# translate a list of (entity, entity) tuples to
# a list of (parent entity, parent entity) tuples,
# thereby removing duplicate (parent entity, parent entity)
# pairs.
# o pair_list - a list of (entity, entity) tuples
parent_pair_list = []
for (e1, e2) in pair_list:
p1 = e1.get_parent()
p2 = e2.get_parent()
if p1 == p2:
continue
elif p1 < p2:
parent_pair_list.append((p1, p2))
else:
parent_pair_list.append((p2, p1))
return uniqueify(parent_pair_list)
# Public
def search(self, center, radius, level="A"):
"""Neighbor search.
Return all atoms/residues/chains/models/structures
that have at least one atom within radius of center.
What entity level is returned (e.g. atoms or residues)
is determined by level (A=atoms, R=residues, C=chains,
M=models, S=structures).
Arguments:
- center - Numeric array
- radius - float
- level - char (A, R, C, M, S)
"""
if level not in entity_levels:
raise PDBException(f"{level}: Unknown level")
center = numpy.require(center, dtype="d", requirements="C")
if center.shape != (3,):
raise Exception("Expected a 3-dimensional NumPy array")
points = self.kdt.search(center, radius)
atom_list = [self.atom_list[point.index] for point in points]
if level == "A":
return atom_list
else:
return unfold_entities(atom_list, level)
def search_all(self, radius, level="A"):
"""All neighbor search.
Search all entities that have atoms pairs within
radius.
Arguments:
- radius - float
- level - char (A, R, C, M, S)
"""
if level not in entity_levels:
raise PDBException(f"{level}: Unknown level")
neighbors = self.kdt.neighbor_search(radius)
atom_list = self.atom_list
atom_pair_list = []
for neighbor in neighbors:
i1 = neighbor.index1
i2 = neighbor.index2
a1 = atom_list[i1]
a2 = atom_list[i2]
atom_pair_list.append((a1, a2))
if level == "A":
# return atoms
return atom_pair_list
next_level_pair_list = atom_pair_list
for next_level in ["R", "C", "M", "S"]:
next_level_pair_list = self._get_unique_parent_pairs(next_level_pair_list)
if level == next_level:
return next_level_pair_list