Spaces:
No application file
No application file
# Copyright (C) 2002, 2004 Thomas Hamelryck ([email protected]) | |
# All rights reserved. | |
# | |
# This file is part of the Biopython distribution and governed by your | |
# choice of the "Biopython License Agreement" or the "BSD 3-Clause License". | |
# Please see the LICENSE file that should have been included as part of this | |
# package. | |
"""Fast atom neighbor lookup using a KD tree (implemented in C).""" | |
import numpy | |
from Bio.PDB.PDBExceptions import PDBException | |
from Bio.PDB.Selection import unfold_entities, entity_levels, uniqueify | |
class NeighborSearch: | |
"""Class for neighbor searching. | |
This class can be used for two related purposes: | |
1. To find all atoms/residues/chains/models/structures within radius | |
of a given query position. | |
2. To find all atoms/residues/chains/models/structures that are within | |
a fixed radius of each other. | |
NeighborSearch makes use of the KDTree class implemented in C for speed. | |
""" | |
def __init__(self, atom_list, bucket_size=10): | |
"""Create the object. | |
Arguments: | |
- atom_list - list of atoms. This list is used in the queries. | |
It can contain atoms from different structures. | |
- bucket_size - bucket size of KD tree. You can play around | |
with this to optimize speed if you feel like it. | |
""" | |
from Bio.PDB.kdtrees import KDTree | |
self.atom_list = atom_list | |
# get the coordinates | |
coord_list = [a.get_coord() for a in atom_list] | |
# to Nx3 array of type float | |
self.coords = numpy.array(coord_list, dtype="d") | |
assert bucket_size > 1 | |
assert self.coords.shape[1] == 3 | |
self.kdt = KDTree(self.coords, bucket_size) | |
# Private | |
def _get_unique_parent_pairs(self, pair_list): | |
# translate a list of (entity, entity) tuples to | |
# a list of (parent entity, parent entity) tuples, | |
# thereby removing duplicate (parent entity, parent entity) | |
# pairs. | |
# o pair_list - a list of (entity, entity) tuples | |
parent_pair_list = [] | |
for (e1, e2) in pair_list: | |
p1 = e1.get_parent() | |
p2 = e2.get_parent() | |
if p1 == p2: | |
continue | |
elif p1 < p2: | |
parent_pair_list.append((p1, p2)) | |
else: | |
parent_pair_list.append((p2, p1)) | |
return uniqueify(parent_pair_list) | |
# Public | |
def search(self, center, radius, level="A"): | |
"""Neighbor search. | |
Return all atoms/residues/chains/models/structures | |
that have at least one atom within radius of center. | |
What entity level is returned (e.g. atoms or residues) | |
is determined by level (A=atoms, R=residues, C=chains, | |
M=models, S=structures). | |
Arguments: | |
- center - Numeric array | |
- radius - float | |
- level - char (A, R, C, M, S) | |
""" | |
if level not in entity_levels: | |
raise PDBException(f"{level}: Unknown level") | |
center = numpy.require(center, dtype="d", requirements="C") | |
if center.shape != (3,): | |
raise Exception("Expected a 3-dimensional NumPy array") | |
points = self.kdt.search(center, radius) | |
atom_list = [self.atom_list[point.index] for point in points] | |
if level == "A": | |
return atom_list | |
else: | |
return unfold_entities(atom_list, level) | |
def search_all(self, radius, level="A"): | |
"""All neighbor search. | |
Search all entities that have atoms pairs within | |
radius. | |
Arguments: | |
- radius - float | |
- level - char (A, R, C, M, S) | |
""" | |
if level not in entity_levels: | |
raise PDBException(f"{level}: Unknown level") | |
neighbors = self.kdt.neighbor_search(radius) | |
atom_list = self.atom_list | |
atom_pair_list = [] | |
for neighbor in neighbors: | |
i1 = neighbor.index1 | |
i2 = neighbor.index2 | |
a1 = atom_list[i1] | |
a2 = atom_list[i2] | |
atom_pair_list.append((a1, a2)) | |
if level == "A": | |
# return atoms | |
return atom_pair_list | |
next_level_pair_list = atom_pair_list | |
for next_level in ["R", "C", "M", "S"]: | |
next_level_pair_list = self._get_unique_parent_pairs(next_level_pair_list) | |
if level == next_level: | |
return next_level_pair_list | |