aakash0017's picture
Upload folder using huggingface_hub
b7731cd
# Copyright (C) 2009 by Eric Talevich ([email protected])
#
# This file is part of the Biopython distribution and governed by your
# choice of the "Biopython License Agreement" or the "BSD 3-Clause License".
# Please see the LICENSE file that should have been included as part of this
# package.
"""Utilities for handling, displaying and exporting Phylo trees.
Third-party libraries are loaded when the corresponding function is called.
"""
import math
import sys
from Bio import MissingPythonDependencyError
def to_networkx(tree):
"""Convert a Tree object to a networkx graph.
The result is useful for graph-oriented analysis, and also interactive
plotting with pylab, matplotlib or pygraphviz, though the resulting diagram
is usually not ideal for displaying a phylogeny.
Requires NetworkX version 0.99 or later.
"""
try:
import networkx
except ImportError:
raise MissingPythonDependencyError(
"Install NetworkX if you want to use to_networkx."
) from None
# NB (1/2010): the networkx API stabilized at v.1.0
# 1.0+: edges accept arbitrary data as kwargs, weights are floats
# 0.99: edges accept weight as a string, nothing else
# pre-0.99: edges accept no additional data
# Ubuntu Lucid LTS uses v0.99, let's support everything
if networkx.__version__ >= "1.0":
def add_edge(graph, n1, n2):
graph.add_edge(n1, n2, weight=n2.branch_length or 1.0)
# Copy branch color value as hex, if available
if hasattr(n2, "color") and n2.color is not None:
graph[n1][n2]["color"] = n2.color.to_hex()
elif hasattr(n1, "color") and n1.color is not None:
# Cascading color attributes
graph[n1][n2]["color"] = n1.color.to_hex()
n2.color = n1.color
# Copy branch weight value (float) if available
if hasattr(n2, "width") and n2.width is not None:
graph[n1][n2]["width"] = n2.width
elif hasattr(n1, "width") and n1.width is not None:
# Cascading width attributes
graph[n1][n2]["width"] = n1.width
n2.width = n1.width
elif networkx.__version__ >= "0.99":
def add_edge(graph, n1, n2):
graph.add_edge(n1, n2, (n2.branch_length or 1.0))
else:
def add_edge(graph, n1, n2):
graph.add_edge(n1, n2)
def build_subgraph(graph, top):
"""Walk down the Tree, building graphs, edges and nodes."""
for clade in top:
graph.add_node(clade.root)
add_edge(graph, top.root, clade.root)
build_subgraph(graph, clade)
if tree.rooted:
G = networkx.DiGraph()
else:
G = networkx.Graph()
G.add_node(tree.root)
build_subgraph(G, tree.root)
return G
def draw_ascii(tree, file=None, column_width=80):
"""Draw an ascii-art phylogram of the given tree.
The printed result looks like::
_________ Orange
______________|
| |______________ Tangerine
______________|
| | _________________________ Grapefruit
_| |_________|
| |______________ Pummelo
|
|__________________________________ Apple
:Parameters:
file : file-like object
File handle opened for writing the output drawing. (Default:
standard output)
column_width : int
Total number of text columns used by the drawing.
"""
if file is None:
file = sys.stdout
taxa = tree.get_terminals()
# Some constants for the drawing calculations
max_label_width = max(len(str(taxon)) for taxon in taxa)
drawing_width = column_width - max_label_width - 1
drawing_height = 2 * len(taxa) - 1
def get_col_positions(tree):
"""Create a mapping of each clade to its column position."""
depths = tree.depths()
# If there are no branch lengths, assume unit branch lengths
if max(depths.values()) == 0:
depths = tree.depths(unit_branch_lengths=True)
# Potential drawing overflow due to rounding -- 1 char per tree layer
fudge_margin = int(math.ceil(math.log(len(taxa), 2)))
cols_per_branch_unit = (drawing_width - fudge_margin) / max(depths.values())
return {
clade: int(blen * cols_per_branch_unit + 1.0)
for clade, blen in depths.items()
}
def get_row_positions(tree):
positions = {taxon: 2 * idx for idx, taxon in enumerate(taxa)}
def calc_row(clade):
for subclade in clade:
if subclade not in positions:
calc_row(subclade)
positions[clade] = (
positions[clade.clades[0]] + positions[clade.clades[-1]]
) // 2
calc_row(tree.root)
return positions
col_positions = get_col_positions(tree)
row_positions = get_row_positions(tree)
char_matrix = [[" " for x in range(drawing_width)] for y in range(drawing_height)]
def draw_clade(clade, startcol):
thiscol = col_positions[clade]
thisrow = row_positions[clade]
# Draw a horizontal line
for col in range(startcol, thiscol):
char_matrix[thisrow][col] = "_"
if clade.clades:
# Draw a vertical line
toprow = row_positions[clade.clades[0]]
botrow = row_positions[clade.clades[-1]]
for row in range(toprow + 1, botrow + 1):
char_matrix[row][thiscol] = "|"
# NB: Short terminal branches need something to stop rstrip()
if (col_positions[clade.clades[0]] - thiscol) < 2:
char_matrix[toprow][thiscol] = ","
# Draw descendents
for child in clade:
draw_clade(child, thiscol + 1)
draw_clade(tree.root, 0)
# Print the complete drawing
for idx, row in enumerate(char_matrix):
line = "".join(row).rstrip()
# Add labels for terminal taxa in the right margin
if idx % 2 == 0:
line += " " + str(taxa[idx // 2])
file.write(line + "\n")
file.write("\n")
def draw(
tree,
label_func=str,
do_show=True,
show_confidence=True,
# For power users
axes=None,
branch_labels=None,
label_colors=None,
*args,
**kwargs,
):
"""Plot the given tree using matplotlib (or pylab).
The graphic is a rooted tree, drawn with roughly the same algorithm as
draw_ascii.
Additional keyword arguments passed into this function are used as pyplot
options. The input format should be in the form of:
pyplot_option_name=(tuple), pyplot_option_name=(tuple, dict), or
pyplot_option_name=(dict).
Example using the pyplot options 'axhspan' and 'axvline'::
from Bio import Phylo, AlignIO
from Bio.Phylo.TreeConstruction import DistanceCalculator, DistanceTreeConstructor
constructor = DistanceTreeConstructor()
aln = AlignIO.read(open('TreeConstruction/msa.phy'), 'phylip')
calculator = DistanceCalculator('identity')
dm = calculator.get_distance(aln)
tree = constructor.upgma(dm)
Phylo.draw(tree, axhspan=((0.25, 7.75), {'facecolor':'0.5'}),
... axvline={'x':0, 'ymin':0, 'ymax':1})
Visual aspects of the plot can also be modified using pyplot's own functions
and objects (via pylab or matplotlib). In particular, the pyplot.rcParams
object can be used to scale the font size (rcParams["font.size"]) and line
width (rcParams["lines.linewidth"]).
:Parameters:
label_func : callable
A function to extract a label from a node. By default this is str(),
but you can use a different function to select another string
associated with each node. If this function returns None for a node,
no label will be shown for that node.
do_show : bool
Whether to show() the plot automatically.
show_confidence : bool
Whether to display confidence values, if present on the tree.
axes : matplotlib/pylab axes
If a valid matplotlib.axes.Axes instance, the phylogram is plotted
in that Axes. By default (None), a new figure is created.
branch_labels : dict or callable
A mapping of each clade to the label that will be shown along the
branch leading to it. By default this is the confidence value(s) of
the clade, taken from the ``confidence`` attribute, and can be
easily toggled off with this function's ``show_confidence`` option.
But if you would like to alter the formatting of confidence values,
or label the branches with something other than confidence, then use
this option.
label_colors : dict or callable
A function or a dictionary specifying the color of the tip label.
If the tip label can't be found in the dict or label_colors is
None, the label will be shown in black.
"""
try:
import matplotlib.pyplot as plt
except ImportError:
try:
import pylab as plt
except ImportError:
raise MissingPythonDependencyError(
"Install matplotlib or pylab if you want to use draw."
) from None
import matplotlib.collections as mpcollections
# Arrays that store lines for the plot of clades
horizontal_linecollections = []
vertical_linecollections = []
# Options for displaying branch labels / confidence
def conf2str(conf):
if int(conf) == conf:
return str(int(conf))
return str(conf)
if not branch_labels:
if show_confidence:
def format_branch_label(clade):
try:
confidences = clade.confidences
# phyloXML supports multiple confidences
except AttributeError:
pass
else:
return "/".join(conf2str(cnf.value) for cnf in confidences)
if clade.confidence is not None:
return conf2str(clade.confidence)
return None
else:
def format_branch_label(clade):
return None
elif isinstance(branch_labels, dict):
def format_branch_label(clade):
return branch_labels.get(clade)
else:
if not callable(branch_labels):
raise TypeError(
"branch_labels must be either a dict or a callable (function)"
)
format_branch_label = branch_labels
# options for displaying label colors.
if label_colors:
if callable(label_colors):
def get_label_color(label):
return label_colors(label)
else:
# label_colors is presumed to be a dict
def get_label_color(label):
return label_colors.get(label, "black")
else:
def get_label_color(label):
# if label_colors is not specified, use black
return "black"
# Layout
def get_x_positions(tree):
"""Create a mapping of each clade to its horizontal position.
Dict of {clade: x-coord}
"""
depths = tree.depths()
# If there are no branch lengths, assume unit branch lengths
if not max(depths.values()):
depths = tree.depths(unit_branch_lengths=True)
return depths
def get_y_positions(tree):
"""Create a mapping of each clade to its vertical position.
Dict of {clade: y-coord}.
Coordinates are negative, and integers for tips.
"""
maxheight = tree.count_terminals()
# Rows are defined by the tips
heights = {
tip: maxheight - i for i, tip in enumerate(reversed(tree.get_terminals()))
}
# Internal nodes: place at midpoint of children
def calc_row(clade):
for subclade in clade:
if subclade not in heights:
calc_row(subclade)
# Closure over heights
heights[clade] = (
heights[clade.clades[0]] + heights[clade.clades[-1]]
) / 2.0
if tree.root.clades:
calc_row(tree.root)
return heights
x_posns = get_x_positions(tree)
y_posns = get_y_positions(tree)
# The function draw_clade closes over the axes object
if axes is None:
fig = plt.figure()
axes = fig.add_subplot(1, 1, 1)
elif not isinstance(axes, plt.matplotlib.axes.Axes):
raise ValueError(f"Invalid argument for axes: {axes}")
def draw_clade_lines(
use_linecollection=False,
orientation="horizontal",
y_here=0,
x_start=0,
x_here=0,
y_bot=0,
y_top=0,
color="black",
lw=".1",
):
"""Create a line with or without a line collection object.
Graphical formatting of the lines representing clades in the plot can be
customized by altering this function.
"""
if not use_linecollection and orientation == "horizontal":
axes.hlines(y_here, x_start, x_here, color=color, lw=lw)
elif use_linecollection and orientation == "horizontal":
horizontal_linecollections.append(
mpcollections.LineCollection(
[[(x_start, y_here), (x_here, y_here)]], color=color, lw=lw
)
)
elif not use_linecollection and orientation == "vertical":
axes.vlines(x_here, y_bot, y_top, color=color)
elif use_linecollection and orientation == "vertical":
vertical_linecollections.append(
mpcollections.LineCollection(
[[(x_here, y_bot), (x_here, y_top)]], color=color, lw=lw
)
)
def draw_clade(clade, x_start, color, lw):
"""Recursively draw a tree, down from the given clade."""
x_here = x_posns[clade]
y_here = y_posns[clade]
# phyloXML-only graphics annotations
if hasattr(clade, "color") and clade.color is not None:
color = clade.color.to_hex()
if hasattr(clade, "width") and clade.width is not None:
lw = clade.width * plt.rcParams["lines.linewidth"]
# Draw a horizontal line from start to here
draw_clade_lines(
use_linecollection=True,
orientation="horizontal",
y_here=y_here,
x_start=x_start,
x_here=x_here,
color=color,
lw=lw,
)
# Add node/taxon labels
label = label_func(clade)
if label not in (None, clade.__class__.__name__):
axes.text(
x_here,
y_here,
f" {label}",
verticalalignment="center",
color=get_label_color(label),
)
# Add label above the branch (optional)
conf_label = format_branch_label(clade)
if conf_label:
axes.text(
0.5 * (x_start + x_here),
y_here,
conf_label,
fontsize="small",
horizontalalignment="center",
)
if clade.clades:
# Draw a vertical line connecting all children
y_top = y_posns[clade.clades[0]]
y_bot = y_posns[clade.clades[-1]]
# Only apply widths to horizontal lines, like Archaeopteryx
draw_clade_lines(
use_linecollection=True,
orientation="vertical",
x_here=x_here,
y_bot=y_bot,
y_top=y_top,
color=color,
lw=lw,
)
# Draw descendents
for child in clade:
draw_clade(child, x_here, color, lw)
draw_clade(tree.root, 0, "k", plt.rcParams["lines.linewidth"])
# If line collections were used to create clade lines, here they are added
# to the pyplot plot.
for i in horizontal_linecollections:
axes.add_collection(i)
for i in vertical_linecollections:
axes.add_collection(i)
# Aesthetics
try:
name = tree.name
except AttributeError:
pass
else:
if name:
axes.set_title(name)
axes.set_xlabel("branch length")
axes.set_ylabel("taxa")
# Add margins around the tree to prevent overlapping the axes
xmax = max(x_posns.values())
axes.set_xlim(-0.05 * xmax, 1.25 * xmax)
# Also invert the y-axis (origin at the top)
# Add a small vertical margin, but avoid including 0 and N+1 on the y axis
axes.set_ylim(max(y_posns.values()) + 0.8, 0.2)
# Parse and process key word arguments as pyplot options
for key, value in kwargs.items():
try:
# Check that the pyplot option input is iterable, as required
list(value)
except TypeError:
raise ValueError(
'Keyword argument "%s=%s" is not in the format '
"pyplot_option_name=(tuple), pyplot_option_name=(tuple, dict),"
" or pyplot_option_name=(dict) " % (key, value)
) from None
if isinstance(value, dict):
getattr(plt, str(key))(**dict(value))
elif not (isinstance(value[0], tuple)):
getattr(plt, str(key))(*value)
elif isinstance(value[0], tuple):
getattr(plt, str(key))(*value[0], **dict(value[1]))
if do_show:
plt.show()