Spaces:
No application file
No application file
# Copyright 2009 by Tiago Antao <[email protected]>. All rights reserved. | |
# | |
# This file is part of the Biopython distribution and governed by your | |
# choice of the "Biopython License Agreement" or the "BSD 3-Clause License". | |
# Please see the LICENSE file that should have been included as part of this | |
# package. | |
"""Module to control GenePop.""" | |
import os | |
import re | |
import shutil | |
import tempfile | |
from Bio.Application import AbstractCommandline, _Argument | |
def _gp_float(tok): | |
"""Get a float from a token, if it fails, returns the string (PRIVATE).""" | |
try: | |
return float(tok) | |
except ValueError: | |
return str(tok) | |
def _gp_int(tok): | |
"""Get a int from a token, if it fails, returns the string (PRIVATE).""" | |
try: | |
return int(tok) | |
except ValueError: | |
return str(tok) | |
def _read_allele_freq_table(f): | |
line = f.readline() | |
while " --" not in line: | |
if line == "": | |
raise StopIteration | |
if "No data" in line: | |
return None, None | |
line = f.readline() | |
alleles = [x for x in f.readline().rstrip().split(" ") if x != ""] | |
alleles = [_gp_int(x) for x in alleles] | |
line = f.readline().rstrip() | |
table = [] | |
while line != "": | |
parts = [x for x in line.split(" ") if x != ""] | |
try: | |
table.append( | |
(parts[0], [_gp_float(x) for x in parts[1:-1]], _gp_int(parts[-1])) | |
) | |
except ValueError: | |
table.append((parts[0], [None] * len(alleles), 0)) | |
line = f.readline().rstrip() | |
return alleles, table | |
def _read_table(f, funs): | |
table = [] | |
line = f.readline().rstrip() | |
while "---" not in line: | |
line = f.readline().rstrip() | |
line = f.readline().rstrip() | |
while "===" not in line and "---" not in line and line != "": | |
toks = [x for x in line.split(" ") if x != ""] | |
parts = [] | |
for i, tok in enumerate(toks): | |
try: | |
parts.append(funs[i](tok)) | |
except ValueError: | |
parts.append(tok) # Could not cast | |
table.append(tuple(parts)) | |
line = f.readline().rstrip() | |
return table | |
def _read_triangle_matrix(f): | |
matrix = [] | |
line = f.readline().rstrip() | |
while line != "": | |
matrix.append([_gp_float(x) for x in [y for y in line.split(" ") if y != ""]]) | |
line = f.readline().rstrip() | |
return matrix | |
def _read_headed_triangle_matrix(f): | |
matrix = {} | |
header = f.readline().rstrip() | |
if "---" in header or "===" in header: | |
header = f.readline().rstrip() | |
nlines = len([x for x in header.split(" ") if x != ""]) - 1 | |
for line_pop in range(nlines): | |
line = f.readline().rstrip() | |
vals = [x for x in line.split(" ")[1:] if x != ""] | |
clean_vals = [] | |
for val in vals: | |
try: | |
clean_vals.append(_gp_float(val)) | |
except ValueError: | |
clean_vals.append(None) | |
for col_pop, clean_val in enumerate(clean_vals): | |
matrix[(line_pop + 1, col_pop)] = clean_val | |
return matrix | |
def _hw_func(stream, is_locus, has_fisher=False): | |
line = stream.readline() | |
if is_locus: | |
hook = "Locus " | |
else: | |
hook = "Pop : " | |
while line != "": | |
if line.lstrip().startswith(hook): | |
stream.readline() | |
stream.readline() | |
stream.readline() | |
table = _read_table( | |
stream, [str, _gp_float, _gp_float, _gp_float, _gp_float, _gp_int, str] | |
) | |
# loci might mean pop if hook="Locus " | |
loci = {} | |
for entry in table: | |
if len(entry) < 4: | |
loci[entry[0]] = None | |
else: | |
locus, p, se, fis_wc, fis_rh, steps = entry[:-1] | |
if se == "-": | |
se = None | |
loci[locus] = p, se, fis_wc, fis_rh, steps | |
return loci | |
line = stream.readline() | |
# self.done = True | |
raise StopIteration | |
class _FileIterator: | |
"""Return an iterator which crawls over a stream of lines with a function (PRIVATE). | |
The generator function is expected to yield a tuple, while | |
consuming input | |
""" | |
def __init__(self, func, fname, handle=None): | |
self.func = func | |
if handle is None: | |
self.stream = open(fname) | |
else: | |
# For special cases where calling code wants to | |
# seek into the file before starting: | |
self.stream = handle | |
self.fname = fname | |
self.done = False | |
def __iter__(self): | |
if self.done: | |
self.done = True | |
raise StopIteration | |
return self | |
def __next__(self): | |
return self.func(self) | |
def __del__(self): | |
self.stream.close() | |
os.remove(self.fname) | |
class _GenePopCommandline(AbstractCommandline): | |
"""Return a Command Line Wrapper for GenePop (PRIVATE).""" | |
def __init__(self, genepop_dir=None, cmd="Genepop", **kwargs): | |
self.parameters = [ | |
_Argument(["command"], "GenePop option to be called", is_required=True), | |
_Argument(["mode"], "Should always be batch", is_required=True), | |
_Argument(["input"], "Input file", is_required=True), | |
_Argument(["Dememorization"], "Dememorization step"), | |
_Argument(["BatchNumber"], "Number of MCMC batches"), | |
_Argument(["BatchLength"], "Length of MCMC chains"), | |
_Argument(["HWtests"], "Enumeration or MCMC"), | |
_Argument(["IsolBDstatistic"], "IBD statistic (a or e)"), | |
_Argument(["MinimalDistance"], "Minimal IBD distance"), | |
_Argument(["GeographicScale"], "Log or Linear"), | |
] | |
AbstractCommandline.__init__(self, cmd, **kwargs) | |
self.set_parameter("mode", "Mode=Batch") | |
def set_menu(self, option_list): | |
"""Set the menu option. | |
Example set_menu([6,1]) = get all F statistics (menu 6.1) | |
""" | |
self.set_parameter( | |
"command", "MenuOptions=" + ".".join(str(x) for x in option_list) | |
) | |
def set_input(self, fname): | |
"""Set the input file name.""" | |
self.set_parameter("input", "InputFile=" + fname) | |
class GenePopController: | |
"""Define a class to interface with the GenePop program.""" | |
def __init__(self, genepop_dir=None): | |
"""Initialize the controller. | |
genepop_dir is the directory where GenePop is. | |
The binary should be called Genepop (capital G) | |
""" | |
self.controller = _GenePopCommandline(genepop_dir) | |
def _get_opts(self, dememorization, batches, iterations, enum_test=None): | |
opts = {} | |
opts["Dememorization"] = dememorization | |
opts["BatchNumber"] = batches | |
opts["BatchLength"] = iterations | |
if enum_test is not None: | |
if enum_test is True: | |
opts["HWtests"] = "Enumeration" | |
else: | |
opts["HWtests"] = "MCMC" | |
return opts | |
def _run_genepop(self, extensions, option, fname, opts=None): | |
if opts is None: | |
opts = {} | |
cwd = os.getcwd() | |
temp_dir = tempfile.mkdtemp() | |
os.chdir(temp_dir) | |
self.controller.set_menu(option) | |
if os.path.isabs(fname): | |
self.controller.set_input(fname) | |
else: | |
self.controller.set_input(cwd + os.sep + fname) | |
for opt in opts: | |
self.controller.set_parameter(opt, opt + "=" + str(opts[opt])) | |
self.controller() # checks error level is zero | |
os.chdir(cwd) | |
shutil.rmtree(temp_dir) | |
def _test_pop_hz_both( | |
self, | |
fname, | |
type, | |
ext, | |
enum_test=True, | |
dememorization=10000, | |
batches=20, | |
iterations=5000, | |
): | |
"""Use Hardy-Weinberg test for heterozygote deficiency/excess (PRIVATE). | |
Returns a population iterator containing a dictionary where | |
dictionary[locus]=(P-val, SE, Fis-WC, Fis-RH, steps). | |
Some loci have a None if the info is not available. | |
SE might be none (for enumerations). | |
""" | |
opts = self._get_opts(dememorization, batches, iterations, enum_test) | |
self._run_genepop([ext], [1, type], fname, opts) | |
def hw_func(self): | |
return _hw_func(self.stream, False) | |
return _FileIterator(hw_func, fname + ext) | |
def _test_global_hz_both( | |
self, | |
fname, | |
type, | |
ext, | |
enum_test=True, | |
dememorization=10000, | |
batches=20, | |
iterations=5000, | |
): | |
"""Use Global Hardy-Weinberg test for heterozygote deficiency/excess (PRIVATE). | |
Returns a triple with: | |
- A list per population containing (pop_name, P-val, SE, switches). | |
Some pops have a None if the info is not available. | |
SE might be none (for enumerations). | |
- A list per loci containing (locus_name, P-val, SE, switches). | |
Some loci have a None if the info is not available. | |
SE might be none (for enumerations). | |
- Overall results (P-val, SE, switches). | |
""" | |
opts = self._get_opts(dememorization, batches, iterations, enum_test) | |
self._run_genepop([ext], [1, type], fname, opts) | |
def hw_pop_func(self): | |
return _read_table(self.stream, [str, _gp_float, _gp_float, _gp_float]) | |
with open(fname + ext) as f1: | |
line = f1.readline() | |
while "by population" not in line: | |
line = f1.readline() | |
pop_p = _read_table(f1, [str, _gp_float, _gp_float, _gp_float]) | |
with open(fname + ext) as f2: | |
line = f2.readline() | |
while "by locus" not in line: | |
line = f2.readline() | |
loc_p = _read_table(f2, [str, _gp_float, _gp_float, _gp_float]) | |
with open(fname + ext) as f: | |
line = f.readline() | |
while "all locus" not in line: | |
line = f.readline() | |
f.readline() | |
f.readline() | |
f.readline() | |
f.readline() | |
line = f.readline().rstrip() | |
p, se, switches = tuple( | |
_gp_float(x) for x in [y for y in line.split(" ") if y != ""] | |
) | |
return pop_p, loc_p, (p, se, switches) | |
# 1.1 | |
def test_pop_hz_deficiency( | |
self, fname, enum_test=True, dememorization=10000, batches=20, iterations=5000 | |
): | |
"""Use Hardy-Weinberg test for heterozygote deficiency. | |
Returns a population iterator containing a dictionary wehre | |
dictionary[locus]=(P-val, SE, Fis-WC, Fis-RH, steps). | |
Some loci have a None if the info is not available. | |
SE might be none (for enumerations). | |
""" | |
return self._test_pop_hz_both( | |
fname, 1, ".D", enum_test, dememorization, batches, iterations | |
) | |
# 1.2 | |
def test_pop_hz_excess( | |
self, fname, enum_test=True, dememorization=10000, batches=20, iterations=5000 | |
): | |
"""Use Hardy-Weinberg test for heterozygote deficiency. | |
Returns a population iterator containing a dictionary where | |
dictionary[locus]=(P-val, SE, Fis-WC, Fis-RH, steps). | |
Some loci have a None if the info is not available. | |
SE might be none (for enumerations). | |
""" | |
return self._test_pop_hz_both( | |
fname, 2, ".E", enum_test, dememorization, batches, iterations | |
) | |
# 1.3 P file | |
def test_pop_hz_prob( | |
self, | |
fname, | |
ext, | |
enum_test=False, | |
dememorization=10000, | |
batches=20, | |
iterations=5000, | |
): | |
"""Use Hardy-Weinberg test based on probability. | |
Returns 2 iterators and a final tuple: | |
1. Returns a loci iterator containing: | |
- A dictionary[pop_pos]=(P-val, SE, Fis-WC, Fis-RH, steps). | |
Some pops have a None if the info is not available. | |
SE might be none (for enumerations). | |
- Result of Fisher's test (Chi2, deg freedom, prob). | |
2. Returns a population iterator containing: | |
- A dictionary[locus]=(P-val, SE, Fis-WC, Fis-RH, steps). | |
Some loci have a None if the info is not available. | |
SE might be none (for enumerations). | |
- Result of Fisher's test (Chi2, deg freedom, prob). | |
3. Final tuple (Chi2, deg freedom, prob). | |
""" | |
opts = self._get_opts(dememorization, batches, iterations, enum_test) | |
self._run_genepop([ext], [1, 3], fname, opts) | |
def hw_prob_loci_func(self): | |
return _hw_func(self.stream, True, True) | |
def hw_prob_pop_func(self): | |
return _hw_func(self.stream, False, True) | |
shutil.copyfile(fname + ".P", fname + ".P2") | |
return ( | |
_FileIterator(hw_prob_loci_func, fname + ".P"), | |
_FileIterator(hw_prob_pop_func, fname + ".P2"), | |
) | |
# 1.4 | |
def test_global_hz_deficiency( | |
self, fname, enum_test=True, dememorization=10000, batches=20, iterations=5000 | |
): | |
"""Use Global Hardy-Weinberg test for heterozygote deficiency. | |
Returns a triple with: | |
- An list per population containing (pop_name, P-val, SE, switches). | |
Some pops have a None if the info is not available. | |
SE might be none (for enumerations). | |
- An list per loci containing (locus_name, P-val, SE, switches). | |
Some loci have a None if the info is not available. | |
SE might be none (for enumerations). | |
- Overall results (P-val, SE, switches). | |
""" | |
return self._test_global_hz_both( | |
fname, 4, ".DG", enum_test, dememorization, batches, iterations | |
) | |
# 1.5 | |
def test_global_hz_excess( | |
self, fname, enum_test=True, dememorization=10000, batches=20, iterations=5000 | |
): | |
"""Use Global Hardy-Weinberg test for heterozygote excess. | |
Returns a triple with: | |
- A list per population containing (pop_name, P-val, SE, switches). | |
Some pops have a None if the info is not available. | |
SE might be none (for enumerations). | |
- A list per loci containing (locus_name, P-val, SE, switches). | |
Some loci have a None if the info is not available. | |
SE might be none (for enumerations). | |
- Overall results (P-val, SE, switches) | |
""" | |
return self._test_global_hz_both( | |
fname, 5, ".EG", enum_test, dememorization, batches, iterations | |
) | |
# 2.1 | |
def test_ld(self, fname, dememorization=10000, batches=20, iterations=5000): | |
"""Test for linkage disequilibrium on each pair of loci in each population.""" | |
opts = self._get_opts(dememorization, batches, iterations) | |
self._run_genepop([".DIS"], [2, 1], fname, opts) | |
def ld_pop_func(self): | |
current_pop = None | |
line = self.stream.readline().rstrip() | |
if line == "": | |
self.done = True | |
raise StopIteration | |
toks = [x for x in line.split(" ") if x != ""] | |
pop, locus1, locus2 = toks[0], toks[1], toks[2] | |
if not hasattr(self, "start_locus1"): | |
start_locus1, start_locus2 = locus1, locus2 | |
current_pop = -1 | |
if locus1 == start_locus1 and locus2 == start_locus2: | |
current_pop += 1 | |
if toks[3] == "No": | |
return current_pop, pop, (locus1, locus2), None | |
p, se, switches = _gp_float(toks[3]), _gp_float(toks[4]), _gp_int(toks[5]) | |
return current_pop, pop, (locus1, locus2), (p, se, switches) | |
def ld_func(self): | |
line = self.stream.readline().rstrip() | |
if line == "": | |
self.done = True | |
raise StopIteration | |
toks = [x for x in line.split(" ") if x != ""] | |
locus1, locus2 = toks[0], toks[2] | |
try: | |
chi2, df, p = _gp_float(toks[3]), _gp_int(toks[4]), _gp_float(toks[5]) | |
except ValueError: | |
return (locus1, locus2), None | |
return (locus1, locus2), (chi2, df, p) | |
f1 = open(fname + ".DIS") | |
line = f1.readline() | |
while "----" not in line: | |
line = f1.readline() | |
shutil.copyfile(fname + ".DIS", fname + ".DI2") | |
f2 = open(fname + ".DI2") | |
line = f2.readline() | |
while "Locus pair" not in line: | |
line = f2.readline() | |
while "----" not in line: | |
line = f2.readline() | |
return ( | |
_FileIterator(ld_pop_func, fname + ".DIS", f1), | |
_FileIterator(ld_func, fname + ".DI2", f2), | |
) | |
# 2.2 | |
def create_contingency_tables(self, fname): | |
"""Provision for creating Genotypic contingency tables.""" | |
raise NotImplementedError | |
# 3.1 PR/GE files | |
def test_genic_diff_all( | |
self, fname, dememorization=10000, batches=20, iterations=5000 | |
): | |
"""Provision for Genic differentiation for all populations.""" | |
raise NotImplementedError | |
# 3.2 PR2/GE2 files | |
def test_genic_diff_pair( | |
self, fname, dememorization=10000, batches=20, iterations=5000 | |
): | |
"""Provision for Genic differentiation for all population pairs.""" | |
raise NotImplementedError | |
# 3.3 G files | |
def test_genotypic_diff_all( | |
self, fname, dememorization=10000, batches=20, iterations=5000 | |
): | |
"""Provision for Genotypic differentiation for all populations.""" | |
raise NotImplementedError | |
# 3.4 2G2 files | |
def test_genotypic_diff_pair( | |
self, fname, dememorization=10000, batches=20, iterations=5000 | |
): | |
"""Provision for Genotypic differentiation for all population pairs.""" | |
raise NotImplementedError | |
# 4 | |
def estimate_nm(self, fname): | |
"""Estimate the Number of Migrants. | |
Parameters: | |
- fname - file name | |
Returns | |
- Mean sample size | |
- Mean frequency of private alleles | |
- Number of migrants for Ne=10 | |
- Number of migrants for Ne=25 | |
- Number of migrants for Ne=50 | |
- Number of migrants after correcting for expected size | |
""" | |
self._run_genepop(["PRI"], [4], fname) | |
with open(fname + ".PRI") as f: | |
lines = f.readlines() # Small file, it is ok | |
for line in lines: | |
m = re.search("Mean sample size: ([.0-9]+)", line) | |
if m is not None: | |
mean_sample_size = _gp_float(m.group(1)) | |
m = re.search(r"Mean frequency of private alleles p\(1\)= ([.0-9]+)", line) | |
if m is not None: | |
mean_priv_alleles = _gp_float(m.group(1)) | |
m = re.search("N=10: ([.0-9]+)", line) | |
if m is not None: | |
mig10 = _gp_float(m.group(1)) | |
m = re.search("N=25: ([.0-9]+)", line) | |
if m is not None: | |
mig25 = _gp_float(m.group(1)) | |
m = re.search("N=50: ([.0-9]+)", line) | |
if m is not None: | |
mig50 = _gp_float(m.group(1)) | |
m = re.search("for size= ([.0-9]+)", line) | |
if m is not None: | |
mig_corrected = _gp_float(m.group(1)) | |
os.remove(fname + ".PRI") | |
return mean_sample_size, mean_priv_alleles, mig10, mig25, mig50, mig_corrected | |
# 5.1 | |
def calc_allele_genotype_freqs(self, fname): | |
"""Calculate allele and genotype frequencies per locus and per sample. | |
Parameters: | |
- fname - file name | |
Returns tuple with 2 elements: | |
- Population iterator with | |
- population name | |
- Locus dictionary with key = locus name and content tuple as | |
Genotype List with | |
(Allele1, Allele2, observed, expected) | |
(expected homozygotes, observed hm, | |
expected heterozygotes, observed ht) | |
Allele frequency/Fis dictionary with allele as key and | |
(count, frequency, Fis Weir & Cockerham) | |
- Totals as a pair | |
- count | |
- Fis Weir & Cockerham, | |
- Fis Robertson & Hill | |
- Locus iterator with | |
- Locus name | |
- allele list | |
- Population list with a triple | |
- population name | |
- list of allele frequencies in the same order as allele list above | |
- number of genes | |
Will create a file called fname.INF | |
""" | |
self._run_genepop(["INF"], [5, 1], fname) | |
# First pass, general information | |
# num_loci = None | |
# num_pops = None | |
# with open(fname + ".INF") as f: | |
# line = f.readline() | |
# while (num_loci is None or num_pops is None) and line != '': | |
# m = re.search("Number of populations detected : ([0-9+])", l) | |
# if m is not None: | |
# num_pops = _gp_int(m.group(1)) | |
# m = re.search("Number of loci detected : ([0-9+])", l) | |
# if m is not None: | |
# num_loci = _gp_int(m.group(1)) | |
# line = f.readline() | |
def pop_parser(self): | |
if hasattr(self, "old_line"): | |
line = self.old_line | |
del self.old_line | |
else: | |
line = self.stream.readline() | |
loci_content = {} | |
while line != "": | |
line = line.rstrip() | |
if "Tables of allelic frequencies for each locus" in line: | |
return self.curr_pop, loci_content | |
match = re.match(".*Pop: (.+) Locus: (.+)", line) | |
if match is not None: | |
pop = match.group(1).rstrip() | |
locus = match.group(2) | |
if not hasattr(self, "first_locus"): | |
self.first_locus = locus | |
if hasattr(self, "curr_pop"): | |
if self.first_locus == locus: | |
old_pop = self.curr_pop | |
# self.curr_pop = pop | |
self.old_line = line | |
del self.first_locus | |
del self.curr_pop | |
return old_pop, loci_content | |
self.curr_pop = pop | |
else: | |
line = self.stream.readline() | |
continue | |
geno_list = [] | |
line = self.stream.readline() | |
if "No data" in line: | |
continue | |
while "Genotypes Obs." not in line: | |
line = self.stream.readline() | |
while line != "\n": | |
m2 = re.match(" +([0-9]+) , ([0-9]+) *([0-9]+) *(.+)", line) | |
if m2 is not None: | |
geno_list.append( | |
( | |
_gp_int(m2.group(1)), | |
_gp_int(m2.group(2)), | |
_gp_int(m2.group(3)), | |
_gp_float(m2.group(4)), | |
) | |
) | |
else: | |
line = self.stream.readline() | |
continue | |
line = self.stream.readline() | |
while "Expected number of ho" not in line: | |
line = self.stream.readline() | |
expHo = _gp_float(line[38:]) | |
line = self.stream.readline() | |
obsHo = _gp_int(line[38:]) | |
line = self.stream.readline() | |
expHe = _gp_float(line[38:]) | |
line = self.stream.readline() | |
obsHe = _gp_int(line[38:]) | |
line = self.stream.readline() | |
while "Sample count" not in line: | |
line = self.stream.readline() | |
line = self.stream.readline() | |
freq_fis = {} | |
overall_fis = None | |
while "----" not in line: | |
vals = [x for x in line.rstrip().split(" ") if x != ""] | |
if vals[0] == "Tot": | |
overall_fis = ( | |
_gp_int(vals[1]), | |
_gp_float(vals[2]), | |
_gp_float(vals[3]), | |
) | |
else: | |
freq_fis[_gp_int(vals[0])] = ( | |
_gp_int(vals[1]), | |
_gp_float(vals[2]), | |
_gp_float(vals[3]), | |
) | |
line = self.stream.readline() | |
loci_content[locus] = ( | |
geno_list, | |
(expHo, obsHo, expHe, obsHe), | |
freq_fis, | |
overall_fis, | |
) | |
self.done = True | |
raise StopIteration | |
def locus_parser(self): | |
line = self.stream.readline() | |
while line != "": | |
line = line.rstrip() | |
match = re.match(" Locus: (.+)", line) | |
if match is not None: | |
locus = match.group(1) | |
alleles, table = _read_allele_freq_table(self.stream) | |
return locus, alleles, table | |
line = self.stream.readline() | |
self.done = True | |
raise StopIteration | |
shutil.copyfile(fname + ".INF", fname + ".IN2") | |
pop_iter = _FileIterator(pop_parser, fname + ".INF") | |
locus_iter = _FileIterator(locus_parser, fname + ".IN2") | |
return (pop_iter, locus_iter) | |
def _calc_diversities_fis(self, fname, ext): | |
self._run_genepop([ext], [5, 2], fname) | |
with open(fname + ext) as f: | |
line = f.readline() | |
while line != "": | |
line = line.rstrip() | |
if line.startswith( | |
"Statistics per sample over all loci with at least two individuals typed" | |
): | |
avg_fis = _read_table(f, [str, _gp_float, _gp_float, _gp_float]) | |
avg_Qintra = _read_table(f, [str, _gp_float]) | |
line = f.readline() | |
def fis_func(self): | |
line = self.stream.readline() | |
while line != "": | |
line = line.rstrip() | |
m = re.search("Locus: (.+)", line) | |
if m is not None: | |
locus = m.group(1) | |
self.stream.readline() | |
if "No complete" in self.stream.readline(): | |
return locus, None | |
self.stream.readline() | |
fis_table = _read_table( | |
self.stream, [str, _gp_float, _gp_float, _gp_float] | |
) | |
self.stream.readline() | |
avg_qinter, avg_fis = tuple( | |
_gp_float(x) | |
for x in [ | |
y for y in self.stream.readline().split(" ") if y != "" | |
] | |
) | |
return locus, fis_table, avg_qinter, avg_fis | |
line = self.stream.readline() | |
self.done = True | |
raise StopIteration | |
return _FileIterator(fis_func, fname + ext), avg_fis, avg_Qintra | |
# 5.2 | |
def calc_diversities_fis_with_identity(self, fname): | |
"""Compute identity-base Gene diversities and Fis.""" | |
return self._calc_diversities_fis(fname, ".DIV") | |
# 5.3 | |
def calc_diversities_fis_with_size(self, fname): | |
"""Provision to Computer Allele size-based Gene diversities and Fis.""" | |
raise NotImplementedError | |
# 6.1 Less genotype frequencies | |
def calc_fst_all(self, fname): | |
"""Execute GenePop and gets Fst/Fis/Fit (all populations). | |
Parameters: | |
- fname - file name | |
Returns: | |
- (multiLocusFis, multiLocusFst, multiLocus Fit), | |
- Iterator of tuples | |
(Locus name, Fis, Fst, Fit, Qintra, Qinter) | |
Will create a file called ``fname.FST``. | |
This does not return the genotype frequencies. | |
""" | |
self._run_genepop([".FST"], [6, 1], fname) | |
with open(fname + ".FST") as f: | |
line = f.readline() | |
while line != "": | |
if line.startswith(" All:"): | |
toks = [x for x in line.rstrip().split(" ") if x != ""] | |
try: | |
allFis = _gp_float(toks[1]) | |
except ValueError: | |
allFis = None | |
try: | |
allFst = _gp_float(toks[2]) | |
except ValueError: | |
allFst = None | |
try: | |
allFit = _gp_float(toks[3]) | |
except ValueError: | |
allFit = None | |
line = f.readline() | |
def proc(self): | |
if hasattr(self, "last_line"): | |
line = self.last_line | |
del self.last_line | |
else: | |
line = self.stream.readline() | |
locus = None | |
fis = None | |
fst = None | |
fit = None | |
qintra = None | |
qinter = None | |
while line != "": | |
line = line.rstrip() | |
if line.startswith(" Locus:"): | |
if locus is not None: | |
self.last_line = line | |
return locus, fis, fst, fit, qintra, qinter | |
else: | |
locus = line.split(":")[1].lstrip() | |
elif line.startswith("Fis^="): | |
fis = _gp_float(line.split(" ")[1]) | |
elif line.startswith("Fst^="): | |
fst = _gp_float(line.split(" ")[1]) | |
elif line.startswith("Fit^="): | |
fit = _gp_float(line.split(" ")[1]) | |
elif line.startswith("1-Qintra^="): | |
qintra = _gp_float(line.split(" ")[1]) | |
elif line.startswith("1-Qinter^="): | |
qinter = _gp_float(line.split(" ")[1]) | |
return locus, fis, fst, fit, qintra, qinter | |
line = self.stream.readline() | |
if locus is not None: | |
return locus, fis, fst, fit, qintra, qinter | |
self.stream.close() | |
self.done = True | |
raise StopIteration | |
return (allFis, allFst, allFit), _FileIterator(proc, fname + ".FST") | |
# 6.2 | |
def calc_fst_pair(self, fname): | |
"""Estimate spatial structure from Allele identity for all population pairs.""" | |
self._run_genepop([".ST2", ".MIG"], [6, 2], fname) | |
with open(fname + ".ST2") as f: | |
line = f.readline() | |
while line != "": | |
line = line.rstrip() | |
if line.startswith("Estimates for all loci"): | |
avg_fst = _read_headed_triangle_matrix(f) | |
line = f.readline() | |
def loci_func(self): | |
line = self.stream.readline() | |
while line != "": | |
line = line.rstrip() | |
m = re.search(" Locus: (.+)", line) | |
if m is not None: | |
locus = m.group(1) | |
matrix = _read_headed_triangle_matrix(self.stream) | |
return locus, matrix | |
line = self.stream.readline() | |
self.done = True | |
raise StopIteration | |
os.remove(fname + ".MIG") | |
return _FileIterator(loci_func, fname + ".ST2"), avg_fst | |
# 6.3 | |
def calc_rho_all(self, fname): | |
"""Provision for estimating spatial structure from Allele size for all populations.""" | |
raise NotImplementedError | |
# 6.4 | |
def calc_rho_pair(self, fname): | |
"""Provision for estimating spatial structure from Allele size for all population pairs.""" | |
raise NotImplementedError | |
def _calc_ibd(self, fname, sub, stat="a", scale="Log", min_dist=0.00001): | |
"""Calculate isolation by distance statistics (PRIVATE).""" | |
self._run_genepop( | |
[".GRA", ".MIG", ".ISO"], | |
[6, sub], | |
fname, | |
opts={ | |
"MinimalDistance": min_dist, | |
"GeographicScale": scale, | |
"IsolBDstatistic": stat, | |
}, | |
) | |
with open(fname + ".ISO") as f: | |
f.readline() | |
f.readline() | |
f.readline() | |
f.readline() | |
estimate = _read_triangle_matrix(f) | |
f.readline() | |
f.readline() | |
distance = _read_triangle_matrix(f) | |
f.readline() | |
match = re.match("a = (.+), b = (.+)", f.readline().rstrip()) | |
a = _gp_float(match.group(1)) | |
b = _gp_float(match.group(2)) | |
f.readline() | |
f.readline() | |
match = re.match(" b=(.+)", f.readline().rstrip()) | |
bb = _gp_float(match.group(1)) | |
match = re.match(r".*\[(.+) ; (.+)\]", f.readline().rstrip()) | |
bblow = _gp_float(match.group(1)) | |
bbhigh = _gp_float(match.group(2)) | |
os.remove(fname + ".MIG") | |
os.remove(fname + ".GRA") | |
os.remove(fname + ".ISO") | |
return estimate, distance, (a, b), (bb, bblow, bbhigh) | |
# 6.5 | |
def calc_ibd_diplo(self, fname, stat="a", scale="Log", min_dist=0.00001): | |
"""Calculate isolation by distance statistics for diploid data. | |
See _calc_ibd for parameter details. | |
Note that each pop can only have a single individual and | |
the individual name has to be the sample coordinates. | |
""" | |
return self._calc_ibd(fname, 5, stat, scale, min_dist) | |
# 6.6 | |
def calc_ibd_haplo(self, fname, stat="a", scale="Log", min_dist=0.00001): | |
"""Calculate isolation by distance statistics for haploid data. | |
See _calc_ibd for parameter details. | |
Note that each pop can only have a single individual and | |
the individual name has to be the sample coordinates. | |
""" | |
return self._calc_ibd(fname, 6, stat, scale, min_dist) | |