aakash0017's picture
Upload folder using huggingface_hub
b7731cd
# Copyright 2015 by Gert Hulselmans. All rights reserved.
# This file is part of the Biopython distribution and governed by your
# choice of the "Biopython License Agreement" or the "BSD 3-Clause License".
# Please see the LICENSE file that should have been included as part of this
# package.
"""Parse various position frequency matrix format files."""
import re
from Bio import motifs
class Record(list):
"""Class to store the information in a position frequency matrix table.
The record inherits from a list containing the individual motifs.
"""
def __str__(self):
"""Return a string representation of the motifs in the Record object."""
return "\n".join(str(motif) for motif in self)
def read(handle, pfm_format):
"""Read motif(s) from a file in various position frequency matrix formats.
Return the record of PFM(s).
Call the appropriate routine based on the format passed.
"""
# Supporting underscores here for backward compatibility
pfm_format = pfm_format.lower().replace("_", "-")
if pfm_format == "pfm-four-columns":
record = _read_pfm_four_columns(handle)
return record
elif pfm_format == "pfm-four-rows":
record = _read_pfm_four_rows(handle)
return record
else:
raise ValueError("Unknown Position Frequency matrix format '%s'" % pfm_format)
def _read_pfm_four_columns(handle):
"""Read motifs in position frequency matrix format (4 columns) from a file handle.
# cisbp
Pos A C G T
1 0.00961538461538462 0.00961538461538462 0.00961538461538462 0.971153846153846
2 0.00961538461538462 0.00961538461538462 0.00961538461538462 0.971153846153846
3 0.971153846153846 0.00961538461538462 0.00961538461538462 0.00961538461538462
4 0.00961538461538462 0.00961538461538462 0.00961538461538462 0.971153846153846
5 0.00961538461538462 0.971153846153846 0.00961538461538462 0.00961538461538462
6 0.971153846153846 0.00961538461538462 0.00961538461538462 0.00961538461538462
7 0.00961538461538462 0.971153846153846 0.00961538461538462 0.00961538461538462
8 0.00961538461538462 0.00961538461538462 0.00961538461538462 0.971153846153846
# c2h2 zfs
Gene ENSG00000197372
Pos A C G T
1 0.341303 0.132427 0.117054 0.409215
2 0.283785 0.077066 0.364552 0.274597
3 0.491055 0.078208 0.310520 0.120217
4 0.492621 0.076117 0.131007 0.300256
5 0.250645 0.361464 0.176504 0.211387
6 0.276694 0.498070 0.197793 0.027444
7 0.056317 0.014631 0.926202 0.002850
8 0.004470 0.007769 0.983797 0.003964
9 0.936213 0.058787 0.002387 0.002613
10 0.004352 0.004030 0.002418 0.989200
11 0.013277 0.008165 0.001991 0.976567
12 0.968132 0.002263 0.002868 0.026737
13 0.397623 0.052017 0.350783 0.199577
14 0.000000 0.000000 1.000000 0.000000
15 1.000000 0.000000 0.000000 0.000000
16 0.000000 0.000000 1.000000 0.000000
17 0.000000 0.000000 1.000000 0.000000
18 1.000000 0.000000 0.000000 0.000000
19 0.000000 1.000000 0.000000 0.000000
20 1.000000 0.000000 0.000000 0.000000
# c2h2 zfs
Gene FBgn0000210
Motif M1734_0.90
Pos A C G T
1 0.25 0.0833333 0.0833333 0.583333
2 0.75 0.166667 0.0833333 0
3 0.833333 0 0 0.166667
4 1 0 0 0
5 0 0.833333 0.0833333 0.0833333
6 0.333333 0 0 0.666667
7 0.833333 0 0 0.166667
8 0.5 0 0.333333 0.166667
9 0.5 0.0833333 0.166667 0.25
10 0.333333 0.25 0.166667 0.25
11 0.166667 0.25 0.416667 0.166667
# flyfactorsurvey (cluster buster)
>AbdA_Cell_FBgn0000014
1 3 0 14
0 0 0 18
16 0 0 2
18 0 0 0
1 0 0 17
0 0 6 12
15 1 2 0
# homer
>ATGACTCATC AP-1(bZIP)/ThioMac-PU.1-ChIP-Seq(GSE21512)/Homer 6.049537 -1.782996e+03 0 9805.3,5781.0,3085.1,2715.0,0.00e+00
0.419 0.275 0.277 0.028
0.001 0.001 0.001 0.997
0.010 0.002 0.965 0.023
0.984 0.003 0.001 0.012
0.062 0.579 0.305 0.054
0.026 0.001 0.001 0.972
0.043 0.943 0.001 0.012
0.980 0.005 0.001 0.014
0.050 0.172 0.307 0.471
0.149 0.444 0.211 0.195
# hocomoco
> AHR_si
40.51343240527031 18.259112547756697 56.41253757072521 38.77363485291994
10.877470982533044 11.870876719950774 34.66312982331297 96.54723985087516
21.7165707818416 43.883079837598544 20.706746561638717 67.6523201955933
2.5465132509466635 1.3171620263517245 145.8637051322628 4.231336967110781
0.0 150.35847450464382 1.4927836298652875 2.1074592421627525
3.441039751299748 0.7902972158110341 149.37613720253387 0.3512432070271259
0.0 3.441039751299748 0.7024864140542533 149.81519121131782
0.0 0.0 153.95871737667187 0.0
43.07922333291745 66.87558226865211 16.159862546986584 27.844049228115868
# neph
UW.Motif.0001 atgactca
0.772949 0.089579 0.098612 0.038860
0.026652 0.004653 0.025056 0.943639
0.017663 0.023344 0.918728 0.040264
0.919596 0.025414 0.029759 0.025231
0.060312 0.772259 0.104968 0.062462
0.037406 0.020643 0.006667 0.935284
0.047316 0.899024 0.026928 0.026732
0.948639 0.019497 0.005737 0.026128
# tiffin
T A G C
30 0 28 40
0 0 0 99
0 55 14 29
0 99 0 0
20 78 0 0
0 52 7 39
19 46 11 22
0 60 38 0
0 33 0 66
73 0 25 0
99 0 0 0
"""
record = Record()
motif_name = None
motif_nbr = 0
motif_nbr_added = 0
default_nucleotide_order = ["A", "C", "G", "T"]
nucleotide_order = default_nucleotide_order
nucleotide_counts = {"A": [], "C": [], "G": [], "T": []}
for line in handle:
line = line.strip()
if line:
columns = line.split()
nbr_columns = len(columns)
if line.startswith("#"):
# Skip comment lines.
continue
elif line.startswith(">"):
# Parse ">AbdA_Cell_FBgn0000014" and "> AHR_si" like lines and put the part after ">" as motif name.
if motif_nbr != 0 and motif_nbr_added != motif_nbr:
# Add the previous motif to the record.
motif = motifs.Motif(alphabet="GATC", counts=nucleotide_counts)
motif.name = motif_name
record.append(motif)
motif_nbr_added = motif_nbr
# Reinitialize variables for the new motif.
motif_name = line[1:].strip()
nucleotide_order = default_nucleotide_order
elif columns[0] == "Gene":
# Parse "Gene ENSG00000197372" like lines and put the gene name as motif name.
if motif_nbr != 0 and motif_nbr_added != motif_nbr:
# Add the previous motif to the record.
motif = motifs.Motif(alphabet="GATC", counts=nucleotide_counts)
motif.name = motif_name
record.append(motif)
motif_nbr_added = motif_nbr
# Reinitialize variables for the new motif.
motif_name = columns[1]
nucleotide_order = default_nucleotide_order
elif columns[0] == "Motif":
# Parse "Motif M1734_0.90" like lines.
if motif_nbr != 0 and motif_nbr_added != motif_nbr:
# Add the previous motif to the record.
motif = motifs.Motif(alphabet="GATC", counts=nucleotide_counts)
motif.name = motif_name
record.append(motif)
motif_nbr_added = motif_nbr
# Reinitialize variables for the new motif.
motif_name = columns[1]
nucleotide_order = default_nucleotide_order
elif columns[0] == "Pos":
# Parse "Pos A C G T" like lines and change nucleotide order if necessary.
if nbr_columns == 5:
# If the previous line was not a "Gene ENSG00000197372" like line, a new motif starts here.
if motif_nbr != 0 and motif_nbr_added != motif_nbr:
# Add the previous motif to the record.
motif = motifs.Motif(alphabet="GATC", counts=nucleotide_counts)
motif.name = motif_name
record.append(motif)
motif_nbr_added = motif_nbr
nucleotide_order = default_nucleotide_order
if set(columns[1:]) == set(default_nucleotide_order):
nucleotide_order = columns[1:]
elif columns[0] in default_nucleotide_order:
# Parse "A C G T" like lines and change nucleotide order if necessary.
if nbr_columns == 4:
nucleotide_order = default_nucleotide_order
if set(columns) == set(default_nucleotide_order):
nucleotide_order = columns
else:
# Parse matrix columns lines and use the correct nucleotide order.
if nbr_columns == 4:
matrix_columns = columns
elif nbr_columns == 5:
matrix_columns = columns[1:]
else:
continue
if motif_nbr == motif_nbr_added:
# A new motif matrix starts here, so reinitialize variables for the new motif.
nucleotide_counts = {"A": [], "C": [], "G": [], "T": []}
motif_nbr += 1
[
nucleotide_counts[nucleotide].append(float(nucleotide_count))
for nucleotide, nucleotide_count in zip(
nucleotide_order, matrix_columns
)
]
else:
# Empty lines can be separators between motifs.
if motif_nbr != 0 and motif_nbr_added != motif_nbr:
# Add the previous motif to the record.
motif = motifs.Motif(alphabet="GATC", counts=nucleotide_counts)
motif.name = motif_name
record.append(motif)
motif_nbr_added = motif_nbr
# Reinitialize variables for the new motif.
motif_name = None
nucleotide_order = default_nucleotide_order
# nucleotide_counts = {'A': [], 'C': [], 'G': [], 'T': []}
if motif_nbr != 0 and motif_nbr_added != motif_nbr:
motif = motifs.Motif(alphabet="GATC", counts=nucleotide_counts)
motif.name = motif_name
record.append(motif)
return record
def _read_pfm_four_rows(handle):
"""Read motifs in position frequency matrix format (4 rows) from a file handle.
# hdpi
A 0 5 6 5 1 0
C 1 1 0 0 0 4
G 5 0 0 0 3 0
T 0 0 0 1 2 2
# yetfasco
A 0.5 0.0 0.0 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.5 0.0 0.0833333334583333
T 0.0 0.0 0.0 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.0 0.0 0.0833333334583333
G 0.0 1.0 0.0 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.0 1.0 0.249999999875
C 0.5 0.0 1.0 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.5 0.0 0.583333333208333
# flyfactorsurvey ZFP finger
A | 92 106 231 135 0 1 780 28 0 700 739 94 60 127 130
C | 138 82 129 81 774 1 3 1 0 6 17 49 193 122 148
G | 270 398 54 164 7 659 1 750 755 65 1 41 202 234 205
T | 290 204 375 411 9 127 6 11 36 20 31 605 335 307 308
# scertf pcm
A | 9 1 1 97 1 94
T | 80 1 97 1 1 2
C | 9 97 1 1 1 2
G | 2 1 1 1 97 2
# scertf pfm
A | 0.090 0.010 0.010 0.970 0.010 0.940
C | 0.090 0.970 0.010 0.010 0.010 0.020
G | 0.020 0.010 0.010 0.010 0.970 0.020
T | 0.800 0.010 0.970 0.010 0.010 0.020
# idmmpmm
> abd-A
0.218451749734889 0.0230646871686108 0.656680805938494 0.898197242841994 0.040694591728526 0.132953340402969 0.74907211028632 0.628313891834571
0.0896076352067868 0.317338282078473 0.321580063626723 0.0461293743372216 0.0502386002120891 0.040694591728526 0.0284994697773065 0.0339342523860021
0.455991516436904 0.0691940615058324 0.0108695652173913 0.0217391304347826 0.0284994697773065 0.0284994697773065 0.016304347826087 0.160127253446448
0.235949098621421 0.590402969247084 0.0108695652173913 0.0339342523860021 0.880567338282079 0.797852598091198 0.206124072110286 0.17762460233298
# JASPAR
>MA0001.1 AGL3
A [ 0 3 79 40 66 48 65 11 65 0 ]
C [94 75 4 3 1 2 5 2 3 3 ]
G [ 1 0 3 4 1 0 5 3 28 88 ]
T [ 2 19 11 50 29 47 22 81 1 6 ]
or::
>MA0001.1 AGL3
0 3 79 40 66 48 65 11 65 0
94 75 4 3 1 2 5 2 3 3
1 0 3 4 1 0 5 3 28 88
2 19 11 50 29 47 22 81 1 6
"""
record = Record()
name_pattern = re.compile(r"^>\s*(.+)\s*")
row_pattern_with_nucleotide_letter = re.compile(
r"\s*([ACGT])\s*[\[|]*\s*([0-9.\-eE\s]+)\s*\]*\s*"
)
row_pattern_without_nucleotide_letter = re.compile(r"\s*([0-9.\-eE\s]+)\s*")
motif_name = None
nucleotide_counts = {}
row_count = 0
nucleotides = ["A", "C", "G", "T"]
for line in handle:
line = line.strip()
name_match = name_pattern.match(line)
row_match_with_nucleotide_letter = row_pattern_with_nucleotide_letter.match(
line
)
row_match_without_nucleotide_letter = (
row_pattern_without_nucleotide_letter.match(line)
)
if name_match:
motif_name = name_match.group(1)
elif row_match_with_nucleotide_letter:
(nucleotide, counts_str) = row_match_with_nucleotide_letter.group(1, 2)
current_nucleotide_counts = counts_str.split()
nucleotide_counts[nucleotide] = [
float(current_nucleotide_count)
for current_nucleotide_count in current_nucleotide_counts
]
row_count += 1
if row_count == 4:
motif = motifs.Motif(alphabet="GATC", counts=nucleotide_counts)
if motif_name:
motif.name = motif_name
record.append(motif)
motif_name = None
nucleotide_counts = {}
row_count = 0
elif row_match_without_nucleotide_letter:
current_nucleotide_counts = row_match_without_nucleotide_letter.group(
1
).split()
nucleotide_counts[nucleotides[row_count]] = [
float(current_nucleotide_count)
for current_nucleotide_count in current_nucleotide_counts
]
row_count += 1
if row_count == 4:
motif = motifs.Motif(alphabet="GATC", counts=nucleotide_counts)
if motif_name:
motif.name = motif_name
record.append(motif)
motif_name = None
nucleotide_counts = {}
row_count = 0
return record
def write(motifs):
"""Return the representation of motifs in Cluster Buster position frequency matrix format."""
lines = []
for m in motifs:
line = f">{m.name}\n"
lines.append(line)
for ACGT_counts in zip(
m.counts["A"], m.counts["C"], m.counts["G"], m.counts["T"]
):
lines.append("{:0.0f}\t{:0.0f}\t{:0.0f}\t{:0.0f}\n".format(*ACGT_counts))
# Finished; glue the lines together.
text = "".join(lines)
return text