Spaces:
No application file
No application file
# Copyright 2008 by Norbert Dojer. All rights reserved. | |
# Adapted by Bartek Wilczynski. | |
# This code is part of the Biopython distribution and governed by its | |
# license. Please see the LICENSE file that should have been included | |
# as part of this package. | |
"""Approximate calculation of appropriate thresholds for motif finding.""" | |
class ScoreDistribution: | |
"""Class representing approximate score distribution for a given motif. | |
Utilizes a dynamic programming approach to calculate the distribution of | |
scores with a predefined precision. Provides a number of methods for calculating | |
thresholds for motif occurrences. | |
""" | |
def __init__(self, motif=None, precision=10**3, pssm=None, background=None): | |
"""Initialize the class.""" | |
if pssm is None: | |
self.min_score = min(0.0, motif.min_score()) | |
self.interval = max(0.0, motif.max_score()) - self.min_score | |
self.n_points = precision * motif.length | |
self.ic = motif.ic() | |
else: | |
self.min_score = min(0.0, pssm.min) | |
self.interval = max(0.0, pssm.max) - self.min_score | |
self.n_points = precision * pssm.length | |
self.ic = pssm.mean(background) | |
self.step = self.interval / (self.n_points - 1) | |
self.mo_density = [0.0] * self.n_points | |
self.mo_density[-self._index_diff(self.min_score)] = 1.0 | |
self.bg_density = [0.0] * self.n_points | |
self.bg_density[-self._index_diff(self.min_score)] = 1.0 | |
if pssm is None: | |
for lo, mo in zip(motif.log_odds(), motif.pwm()): | |
self.modify(lo, mo, motif.background) | |
else: | |
for position in range(pssm.length): | |
mo_new = [0.0] * self.n_points | |
bg_new = [0.0] * self.n_points | |
lo = pssm[:, position] | |
for letter, score in lo.items(): | |
bg = background[letter] | |
mo = pow(2, pssm[letter, position]) * bg | |
d = self._index_diff(score) | |
for i in range(self.n_points): | |
mo_new[self._add(i, d)] += self.mo_density[i] * mo | |
bg_new[self._add(i, d)] += self.bg_density[i] * bg | |
self.mo_density = mo_new | |
self.bg_density = bg_new | |
def _index_diff(self, x, y=0.0): | |
return int((x - y + 0.5 * self.step) // self.step) | |
def _add(self, i, j): | |
return max(0, min(self.n_points - 1, i + j)) | |
def modify(self, scores, mo_probs, bg_probs): | |
"""Modify motifs and background density.""" | |
mo_new = [0.0] * self.n_points | |
bg_new = [0.0] * self.n_points | |
for k, v in scores.items(): | |
d = self._index_diff(v) | |
for i in range(self.n_points): | |
mo_new[self._add(i, d)] += self.mo_density[i] * mo_probs[k] | |
bg_new[self._add(i, d)] += self.bg_density[i] * bg_probs[k] | |
self.mo_density = mo_new | |
self.bg_density = bg_new | |
def threshold_fpr(self, fpr): | |
"""Approximate the log-odds threshold which makes the type I error (false positive rate).""" | |
i = self.n_points | |
prob = 0.0 | |
while prob < fpr: | |
i -= 1 | |
prob += self.bg_density[i] | |
return self.min_score + i * self.step | |
def threshold_fnr(self, fnr): | |
"""Approximate the log-odds threshold which makes the type II error (false negative rate).""" | |
i = -1 | |
prob = 0.0 | |
while prob < fnr: | |
i += 1 | |
prob += self.mo_density[i] | |
return self.min_score + i * self.step | |
def threshold_balanced(self, rate_proportion=1.0, return_rate=False): | |
"""Approximate log-odds threshold making FNR equal to FPR times rate_proportion.""" | |
i = self.n_points | |
fpr = 0.0 | |
fnr = 1.0 | |
while fpr * rate_proportion < fnr: | |
i -= 1 | |
fpr += self.bg_density[i] | |
fnr -= self.mo_density[i] | |
if return_rate: | |
return self.min_score + i * self.step, fpr | |
else: | |
return self.min_score + i * self.step | |
def threshold_patser(self): | |
"""Threshold selection mimicking the behaviour of patser (Hertz, Stormo 1999) software. | |
It selects such a threshold that the log(fpr)=-ic(M) | |
note: the actual patser software uses natural logarithms instead of log_2, so the numbers | |
are not directly comparable. | |
""" | |
return self.threshold_fpr(fpr=2**-self.ic) | |