# Copyright 2019-2022 by Robert T. Miller. All rights reserved. # This file is part of the Biopython distribution and governed by your # choice of the "Biopython License Agreement" or the "BSD 3-Clause License". # Please see the LICENSE file that should have been included as part of this # package. """PICIO: read and write Protein Internal Coordinate (.pic) data files.""" import re from datetime import date from io import StringIO try: import numpy except ImportError: from Bio import MissingPythonDependencyError raise MissingPythonDependencyError( "Install NumPy to build proteins from internal coordinates." ) from Bio.File import as_handle from Bio.PDB.StructureBuilder import StructureBuilder from Bio.PDB.parse_pdb_header import _parse_pdb_header_list from Bio.PDB.PDBExceptions import PDBException from Bio.Data.PDBData import protein_letters_1to3 from Bio.PDB.internal_coords import ( IC_Residue, IC_Chain, Edron, Hedron, Dihedron, AtomKey, ) from Bio.PDB.ic_data import ( ic_data_backbone, ic_data_sidechains, hedra_defaults, dihedra_primary_defaults, dihedra_secondary_defaults, dihedra_secondary_xoxt_defaults, ) from typing import TextIO, Set, List, Tuple, Union, Optional from Bio.PDB.Structure import Structure from Bio.PDB.Residue import Residue from Bio import SeqIO # @profile def read_PIC( file: TextIO, verbose: bool = False, quick: bool = False, defaults: bool = False, ) -> Structure: """Load Protein Internal Coordinate (.pic) data from file. PIC file format: - comment lines start with # - (optional) PDB HEADER record - idcode and deposition date recommended but optional - deposition date in PDB format or as changed by Biopython - (optional) PDB TITLE record - repeat: - Biopython Residue Full ID - sets residue IDs of returned structure - (optional) PDB N, CA, C ATOM records for chain start - (optional) PIC Hedra records for residue - (optional) PIC Dihedra records for residue - (optional) BFAC records listing AtomKeys and b-factors An improvement would define relative positions for HOH (water) entries. Defaults will be supplied for any value if defaults=True. Default values are supplied in ic_data.py, but structures degrade quickly with any deviation from true coordinates. Experiment with :data:`Bio.PDB.internal_coords.IC_Residue.pic_flags` options to :func:`write_PIC` to verify this. N.B. dihedron (i-1)C-N-CA-CB is ignored in assembly if O exists. C-beta is by default placed using O-C-CA-CB, but O is missing in some PDB file residues, which means the sidechain cannot be placed. The alternate CB path (i-1)C-N-CA-CB is provided to circumvent this, but if this is needed then it must be adjusted in conjunction with PHI ((i-1)C-N-CA-C) as they overlap (see :meth:`.bond_set` and :meth:`.bond_rotate` to handle this automatically). :param Bio.File file: :func:`.as_handle` file name or handle :param bool verbose: complain when lines not as expected :param bool quick: don't check residues for all dihedra (no default values) :param bool defaults: create di/hedra as needed from reference database. Amide proton created if 'H' is in IC_Residue.accept_atoms :returns: Biopython Structure object, Residues with .internal_coord attributes but no coordinates except for chain start N, CA, C atoms if supplied, **OR** None on parse fail (silent unless verbose=True) """ proton = "H" in IC_Residue.accept_atoms pdb_hdr_re = re.compile( r"^HEADER\s{4}(?P.{1,40})" r"(?:\s+(?P
\d\d\d\d-\d\d-\d\d|\d\d-\w\w\w-\d\d))?" r"(?:\s+(?P[0-9A-Z]{4}))?\s*$" ) pdb_ttl_re = re.compile(r"^TITLE\s{5}(?P.+)\s*$") biop_id_re = re.compile( r"^\('(?P[^\s]*)',\s(?P\d+),\s" r"'(?P\s|\w)',\s\('(?P\s|[\w\s-]+)" r"',\s(?P-?\d+),\s'(?P\s|\w)'\)\)" r"\s+(?P[\w]{1,3})" r"(\s\[(?P[a-zA-z\s]+)\])?" r"\s*$" ) pdb_atm_re = re.compile( r"^ATOM\s\s(?:\s*(?P\d+))\s(?P[\w\s]{4})" r"(?P\w|\s)(?P[\w]{3})\s(?P.)" r"(?P[\s\-\d]{4})(?P[A-Za-z\s])\s\s\s" r"(?P[\s\-\d\.]{8})(?P[\s\-\d\.]{8})" r"(?P[\s\-\d\.]{8})(?P[\s\d\.]{6})" r"(?P[\s\d\.]{6})\s{6}" r"(?P[a-zA-z\s]{4})(?P.{2})" r"(?P.{2})?\s*$" ) pdbx_atm_re = re.compile( r"^ATOM\s\s(?:\s*(?P\d+))\s(?P[\w\s]{4})" r"(?P\w|\s)(?P[\w]{3})\s(?P.)" r"(?P[\s\-\d]{4})(?P[A-Za-z\s])\s\s\s" r"(?P[\s\-\d\.]{10})(?P[\s\-\d\.]{10})" r"(?P[\s\-\d\.]{10})(?P[\s\d\.]{7})" r"(?P[\s\d\.]{6})\s{6}" r"(?P[a-zA-z\s]{4})(?P.{2})" r"(?P.{2})?\s*$" ) bfac_re = re.compile( r"^BFAC:\s([^\s]+\s+[\-\d\.]+)" r"\s*([^\s]+\s+[\-\d\.]+)?" r"\s*([^\s]+\s+[\-\d\.]+)?" r"\s*([^\s]+\s+[\-\d\.]+)?" r"\s*([^\s]+\s+[\-\d\.]+)?" ) bfac2_re = re.compile(r"([^\s]+)\s+([\-\d\.]+)") struct_builder = StructureBuilder() # init empty header dict # - could use to parse HEADER and TITLE lines except # deposition_date format changed from original PDB header header_dict = _parse_pdb_header_list([]) curr_SMCS = [None, None, None, None] # struct model chain seg SMCS_init = [ struct_builder.init_structure, struct_builder.init_model, struct_builder.init_chain, struct_builder.init_seg, ] sb_res = None rkl = None sb_chain = None sbcic = None sbric = None akc = {} hl12 = {} ha = {} hl23 = {} da = {} bfacs = {} orphan_aks = set() # [] tr = [] # this residue pr = [] # previous residue def akcache(akstr: str) -> AtomKey: """Maintain dictionary of AtomKeys seen while reading this PIC file.""" # akstr: full AtomKey string read from .pic file, includes residue info try: return akc[akstr] except (KeyError): ak = akc[akstr] = AtomKey(akstr) return ak def link_residues(ppr: List[Residue], pr: List[Residue]) -> None: """Set next and prev links between i-1 and i-2 residues.""" for p_r in pr: pric = p_r.internal_coord for p_p_r in ppr: ppric = p_p_r.internal_coord if p_r.id[0] == " ": # not heteroatoms if pric not in ppric.rnext: ppric.rnext.append(pric) if p_p_r.id[0] == " ": if ppric not in pric.rprev: pric.rprev.append(ppric) def process_hedron( a1: str, a2: str, a3: str, l12: str, ang: str, l23: str, ric: IC_Residue, ) -> Tuple: """Create Hedron on current (sbcic) Chain.internal_coord.""" ek = (akcache(a1), akcache(a2), akcache(a3)) atmNdx = AtomKey.fields.atm accpt = IC_Residue.accept_atoms if not all(ek[i].akl[atmNdx] in accpt for i in range(3)): return hl12[ek] = float(l12) ha[ek] = float(ang) hl23[ek] = float(l23) sbcic.hedra[ek] = ric.hedra[ek] = h = Hedron(ek) h.cic = sbcic ak_add(ek, ric) return ek def default_hedron(ek: Tuple, ric: IC_Residue) -> None: """Create Hedron based on same re_class hedra in ref database. Adds Hedron to current Chain.internal_coord, see ic_data for default values and reference database source. """ atomkeys = [] hkey = None atmNdx = AtomKey.fields.atm resNdx = AtomKey.fields.resname resPos = AtomKey.fields.respos atomkeys = [ek[i].akl for i in range(3)] atpl = tuple([atomkeys[i][atmNdx] for i in range(3)]) res = atomkeys[0][resNdx] if ( atomkeys[0][resPos] != atomkeys[2][resPos] # hedra crosses amide bond so not reversed or atpl == ("N", "CA", "C") # or chain start tau or atpl in ic_data_backbone # or found forward hedron in ic_data or (res not in ["A", "G"] and atpl in ic_data_sidechains[res]) ): hkey = ek rhcl = [atomkeys[i][resNdx] + atomkeys[i][atmNdx] for i in range(3)] try: dflts = hedra_defaults["".join(rhcl)][0] except KeyError: if atomkeys[0][resPos] == atomkeys[1][resPos]: rhcl = [atomkeys[i][resNdx] + atomkeys[i][atmNdx] for i in range(2)] rhc = "".join(rhcl) + "X" + atomkeys[2][atmNdx] else: rhcl = [ atomkeys[i][resNdx] + atomkeys[i][atmNdx] for i in range(1, 3) ] rhc = "X" + atomkeys[0][atmNdx] + "".join(rhcl) dflts = hedra_defaults[rhc][0] else: # must be reversed or fail hkey = ek[::-1] rhcl = [atomkeys[i][resNdx] + atomkeys[i][atmNdx] for i in range(2, -1, -1)] dflts = hedra_defaults["".join(rhcl)][0] process_hedron( str(hkey[0]), str(hkey[1]), str(hkey[2]), dflts[0], dflts[1], dflts[2], ric, ) if verbose: print(f" default for {ek}") def hedra_check(dk: Tuple, ric: IC_Residue) -> None: """Confirm both hedra present for dihedron key, use default if set.""" if dk[0:3] not in sbcic.hedra and dk[2::-1] not in sbcic.hedra: if defaults: default_hedron(dk[0:3], ric) else: print(f"{dk} missing h1") if dk[1:4] not in sbcic.hedra and dk[3:0:-1] not in sbcic.hedra: if defaults: default_hedron(dk[1:4], ric) else: print(f"{dk} missing h2") def process_dihedron( a1: str, a2: str, a3: str, a4: str, dangle: str, ric: IC_Residue ) -> Set: """Create Dihedron on current Chain.internal_coord.""" ek = ( akcache(a1), akcache(a2), akcache(a3), akcache(a4), ) atmNdx = AtomKey.fields.atm accpt = IC_Residue.accept_atoms if not all(ek[i].akl[atmNdx] in accpt for i in range(4)): return da[ek] = float(dangle) sbcic.dihedra[ek] = ric.dihedra[ek] = d = Dihedron(ek) d.cic = sbcic if not quick: hedra_check(ek, ric) ak_add(ek, ric) return ek def default_dihedron(ek: List, ric: IC_Residue) -> None: """Create Dihedron based on same residue class dihedra in ref database. Adds Dihedron to current Chain.internal_coord, see ic_data for default values and reference database source. """ atmNdx = AtomKey.fields.atm resNdx = AtomKey.fields.resname resPos = AtomKey.fields.respos rdclass = "" dclass = "" for ak in ek: dclass += ak.akl[atmNdx] rdclass += ak.akl[resNdx] + ak.akl[atmNdx] if dclass == "NCACN": rdclass = rdclass[0:7] + "XN" elif dclass == "CACNCA": rdclass = "XCAXC" + rdclass[5:] elif dclass == "CNCAC": rdclass = "XC" + rdclass[2:] if rdclass in dihedra_primary_defaults: process_dihedron( str(ek[0]), str(ek[1]), str(ek[2]), str(ek[3]), dihedra_primary_defaults[rdclass][0], ric, ) if verbose: print(f" default for {ek}") elif rdclass in dihedra_secondary_defaults: primAngle, offset = dihedra_secondary_defaults[rdclass] rname = ek[2].akl[resNdx] rnum = int(ek[2].akl[resPos]) paKey = None if primAngle == ("N", "CA", "C", "N") and ek[0].ric.rnext != []: paKey = [ AtomKey((rnum, None, rname, primAngle[x], None, None)) for x in range(3) ] rnext = ek[0].ric.rnext paKey.append( AtomKey( ( rnext[0].rbase[0], None, rnext[0].rbase[2], "N", None, None, ) ) ) paKey = tuple(paKey) elif primAngle == ("CA", "C", "N", "CA"): prname = pr.akl[0][resNdx] prnum = pr.akl[0][resPos] paKey = [ AtomKey(prnum, None, prname, primAngle[x], None, None) for x in range(0, 2) ] paKey.add( [ AtomKey((rnum, None, rname, primAngle[x], None, None)) for x in range(2, 4) ] ) paKey = tuple(paKey) else: paKey = tuple( AtomKey((rnum, None, rname, atm, None, None)) for atm in primAngle ) if paKey in da: process_dihedron( str(ek[0]), str(ek[1]), str(ek[2]), str(ek[3]), da[paKey] + dihedra_secondary_defaults[rdclass][1], ric, ) if verbose: print(f" secondary default for {ek}") elif rdclass in dihedra_secondary_xoxt_defaults: if primAngle == ("C", "N", "CA", "C"): # primary for alt cb # no way to trigger alt cb with default=True # because will generate default N-CA-C-O prname = pr.akl[0][resNdx] prnum = pr.akl[0][resPos] paKey = [AtomKey(prnum, None, prname, primAngle[0], None, None)] paKey.add( [ AtomKey((rnum, None, rname, primAngle[x], None, None)) for x in range(1, 4) ] ) paKey = tuple(paKey) else: primAngle, offset = dihedra_secondary_xoxt_defaults[rdclass] rname = ek[2].akl[resNdx] rnum = int(ek[2].akl[resPos]) paKey = tuple( AtomKey((rnum, None, rname, atm, None, None)) for atm in primAngle ) if paKey in da: process_dihedron( str(ek[0]), str(ek[1]), str(ek[2]), str(ek[3]), da[paKey] + offset, ric, ) if verbose: print(f" oxt default for {ek}") else: print( f"missing primary angle {paKey} {primAngle} to " f"generate {rnum}{rname} {rdclass}" ) else: print( f"missing {ek} -> {rdclass} ({dclass}) not found in primary or" " secondary defaults" ) def dihedra_check(ric: IC_Residue) -> None: """Look for required dihedra in residue, generate defaults if set.""" # rnext should be set def ake_recurse(akList: List) -> List: """Bulid combinatorics of AtomKey lists.""" car = akList[0] if len(akList) > 1: retList = [] for ak in car: cdr = akList[1:] rslt = ake_recurse(cdr) for r in rslt: r.insert(0, ak) retList.append(r) return retList else: if len(car) == 1: return [list(car)] else: retList = [[ak] for ak in car] return retList def ak_expand(eLst: List) -> List: """Expand AtomKey list with altlocs, all combinatorics.""" retList = [] for edron in eLst: newList = [] for ak in edron: rslt = ak.ric.split_akl([ak]) rlst = [r[0] for r in rslt] if rlst != []: newList.append(rlst) else: newList.append([ak]) rslt = ake_recurse(newList) for r in rslt: retList.append(r) return retList # dihedra_check processing starts here # generate the list of dihedra this residue should have chkLst = [] sN, sCA, sC = AtomKey(ric, "N"), AtomKey(ric, "CA"), AtomKey(ric, "C") sO, sCB, sH = AtomKey(ric, "O"), AtomKey(ric, "CB"), AtomKey(ric, "H") if ric.rnext != []: for rn in ric.rnext: nN, nCA, nC = ( AtomKey(rn, "N"), AtomKey(rn, "CA"), AtomKey(rn, "C"), ) # intermediate residue, need psi, phi, omg chkLst.append((sN, sCA, sC, nN)) # psi chkLst.append((sCA, sC, nN, nCA)) # omg i+1 chkLst.append((sC, nN, nCA, nC)) # phi i+1 else: chkLst.append((sN, sCA, sC, AtomKey(ric, "OXT"))) # psi rn = "(no rnext)" chkLst.append((sN, sCA, sC, sO)) # locate backbone O if ric.lc != "G": chkLst.append((sO, sC, sCA, sCB)) # locate CB if ric.lc == "A": chkLst.append((sN, sCA, sCB)) # missed for generate from seq if ric.rprev != [] and ric.lc != "P" and proton: chkLst.append((sC, sCA, sN, sH)) # amide proton try: for edron in ic_data_sidechains[ric.lc]: if len(edron) > 3: # dihedra only if all(not atm[0] == "H" for atm in edron): akl = [AtomKey(ric, atm) for atm in edron[0:4]] chkLst.append(akl) except KeyError: pass # now compare generated list to ric.dihedra, get defaults if set. chkLst = ak_expand(chkLst) altloc_ndx = AtomKey.fields.altloc for dk in chkLst: if tuple(dk) in ric.dihedra: pass elif sH in dk: pass # ignore missing hydrogens elif all(atm.akl[altloc_ndx] is None for atm in dk): if defaults: if len(dk) != 3: default_dihedron(dk, ric) else: default_hedron(dk, ric) # add ALA N-Ca-Cb else: if verbose: print(f"{ric}-{rn} missing {dk}") else: # print(f"skip {ek}") pass # ignore missing combinatoric of altloc atoms # need more here? def ak_add(ek: Tuple, ric: IC_Residue) -> None: """Allocate edron key AtomKeys to current residue as appropriate. A hedron or dihedron may span a backbone amide bond, this routine allocates atoms in the (h/di)edron to the ric residue or saves them for a residue yet to be processed. :param set ek: AtomKeys in edron :param IC_Residue ric: current residue to assign AtomKeys to """ res = ric.residue reskl = ( str(res.id[1]), (None if res.id[2] == " " else res.id[2]), ric.lc, ) for ak in ek: if ak.ric is None: sbcic.akset.add(ak) if ak.akl[0:3] == reskl: ak.ric = ric ric.ak_set.add(ak) else: orphan_aks.add(ak) def finish_chain() -> None: """Do last rnext, rprev links and process chain edra data.""" link_residues(pr, tr) # check/confirm completeness if not quick: for r in pr: dihedra_check(r.internal_coord) for r in tr: dihedra_check(r.internal_coord) if ha != {}: sha = {k: ha[k] for k in sorted(ha)} shl12 = {k: hl12[k] for k in sorted(hl12)} shl23 = {k: hl23[k] for k in sorted(hl23)} sbcic._hedraDict2chain(shl12, sha, shl23, da, bfacs) # read_PIC processing starts here: with as_handle(file, mode="r") as handle: for line in handle.readlines(): if line.startswith("#"): pass # skip comment lines elif line.startswith("HEADER "): m = pdb_hdr_re.match(line) if m: header_dict["head"] = m.group("cf") # classification header_dict["idcode"] = m.group("id") header_dict["deposition_date"] = m.group("dd") elif verbose: print("Reading pic file", file, "HEADER parse fail: ", line) elif line.startswith("TITLE "): m = pdb_ttl_re.match(line) if m: header_dict["name"] = m.group("ttl").strip() # print('TTL: ', m.group('ttl').strip()) elif verbose: print("Reading pic file", file, "TITLE parse fail:, ", line) elif line.startswith("("): # Biopython ID line for Residue m = biop_id_re.match(line) if m: # check SMCS = Structure, Model, Chain, SegID segid = m.group(9) if segid is None: segid = " " this_SMCS = [ m.group(1), int(m.group(2)), m.group(3), segid, ] if curr_SMCS != this_SMCS: if curr_SMCS[:3] != this_SMCS[:3] and ha != {}: # chain change so process current chain data finish_chain() akc = {} # atomkey cache, used by akcache() hl12 = {} # hedra key -> len12 ha = {} # -> hedra angle hl23 = {} # -> len23 da = {} # dihedra key -> angle value bfacs = {} # atomkey string -> b-factor # init new Biopython SMCS level as needed for i in range(4): if curr_SMCS[i] != this_SMCS[i]: SMCS_init[i](this_SMCS[i]) curr_SMCS[i] = this_SMCS[i] if i == 0: # 0 = init structure so add header struct_builder.set_header(header_dict) elif i == 1: # new model means new chain and new segid curr_SMCS[2] = curr_SMCS[3] = None elif i == 2: # new chain so init internal_coord sb_chain = struct_builder.chain sbcic = sb_chain.internal_coord = IC_Chain(sb_chain) struct_builder.init_residue( m.group("res"), m.group("het"), int(m.group("pos")), m.group("icode"), ) sb_res = struct_builder.residue if sb_res.id[0] != " ": # skip hetatm continue if 2 == sb_res.is_disordered(): for r in sb_res.child_dict.values(): if not r.internal_coord: sb_res = r break # added to disordered res tr.append(sb_res) else: # new res so fix up previous residue as feasible link_residues(pr, tr) if not quick: for r in pr: # create di/hedra if default for residue i-1 # just linked dihedra_check(r.internal_coord) pr = tr tr = [sb_res] sbric = sb_res.internal_coord = IC_Residue( sb_res ) # no atoms so no rak sbric.cic = sbcic rkl = ( str(sb_res.id[1]), (None if sb_res.id[2] == " " else sb_res.id[2]), sbric.lc, ) sbcic.ordered_aa_ic_list.append(sbric) # update AtomKeys w/o IC_Residue references, in case # chain ends before di/hedra sees them (2XHE test case) for ak in orphan_aks: if ak.akl[0:3] == rkl: ak.ric = sbric sbric.ak_set.add(ak) # may need altoc support here orphan_aks = set(filter(lambda ak: ak.ric is None, orphan_aks)) else: if verbose: print( "Reading pic file", file, "residue ID parse fail: ", line, ) return None elif line.startswith("ATOM "): m = pdb_atm_re.match(line) if not m: m = pdbx_atm_re.match(line) if m: if sb_res is None: # ATOM without res spec already loaded, not a pic file if verbose: print( "Reading pic file", file, "ATOM without residue configured:, ", line, ) return None if sb_res.resname != m.group("res") or sb_res.id[1] != int( m.group("pos") ): if verbose: print( "Reading pic file", file, "ATOM not in configured residue (", sb_res.resname, str(sb_res.id), "):", line, ) return None coord = numpy.array( ( float(m.group("x")), float(m.group("y")), float(m.group("z")), ), "f", ) struct_builder.init_atom( m.group("atm").strip(), coord, float(m.group("tfac")), float(m.group("occ")), m.group("alc"), m.group("atm"), int(m.group("ser")), m.group("elm").strip(), ) # reset because prev does not link to this residue # (chainBreak) pr = [] elif line.startswith("BFAC: "): m = bfac_re.match(line) if m: for bfac_pair in m.groups(): if bfac_pair is not None: m2 = bfac2_re.match(bfac_pair) bfacs[m2.group(1)] = float(m2.group(2)) # else: # print f"Reading pic file {file} B-factor fail: {line}" else: m = Edron.edron_re.match(line) if m and sb_res is not None: if m["a4"] is None: process_hedron( m["a1"], m["a2"], m["a3"], m["len12"], m["angle"], m["len23"], sb_res.internal_coord, ) else: process_dihedron( m["a1"], m["a2"], m["a3"], m["a4"], m["dihedral"], sb_res.internal_coord, ) elif m: print( "PIC file: ", file, " error: no residue info before reading (di/h)edron: ", line, ) return None elif line.strip(): if verbose: print( "Reading PIC file", file, "parse fail on: .", line, ".", ) return None # reached end of input finish_chain() # print(report_PIC(struct_builder.get_structure())) return struct_builder.get_structure() def read_PIC_seq( seqRec: "SeqIO.SeqRecord", pdbid: str = None, title: str = None, chain: str = None, ) -> Structure: """Read :class:`.SeqRecord` into Structure with default internal coords.""" read_pdbid, read_title, read_chain = None, None, None if seqRec.id is not None: read_pdbid = seqRec.id if seqRec.description is not None: read_title = seqRec.description.replace(f"{read_pdbid} ", "") if ":" in read_pdbid: read_pdbid, read_chain = read_pdbid.split(":") if chain is None: chain = read_chain if read_chain is not None else "A" if title is None: title = ( read_title if read_title is not None else f"sequence input {seqRec.id if seqRec.id is not None else ''}" ) if pdbid is None: pdbid = read_pdbid if read_pdbid is not None else "0PDB" today = date.today() datestr = (today.strftime("%d-%b-%y")).upper() output = f"HEADER {'GENERATED STRUCTURE':40}{datestr} {pdbid}\n" output += f"TITLE {title.upper():69}\n" ndx = 1 for r in seqRec.seq: output += ( f"('{pdbid}', 0, '{chain}', (' ', {ndx}, ' ')) {protein_letters_1to3[r]}\n" ) ndx += 1 sp = StringIO() sp.write(output) sp.seek(0) return read_PIC(sp, defaults=True) def _wpr( entity, fp, pdbid, chainid, picFlags: int = IC_Residue.picFlagsDefault, hCut: Optional[Union[float, None]] = None, pCut: Optional[Union[float, None]] = None, ): if entity.internal_coord: if not chainid or not pdbid: chain = entity.parent if not chainid: chainid = chain.id if not pdbid: struct = chain.parent.parent pdbid = struct.header.get("idcode") fp.write( entity.internal_coord._write_PIC( pdbid, chainid, picFlags=picFlags, hCut=hCut, pCut=pCut ) ) else: fp.write(IC_Residue._residue_string(entity)) def _enumerate_entity_atoms(entity): need = False for atm in entity.get_atoms(): need = not atm.get_serial_number() break if need: anum = 1 for res in entity.get_residues(): if 2 == res.is_disordered(): for r in res.child_dict.values(): for atm in r.get_unpacked_list(): atm.set_serial_number(anum) anum += 1 else: for atm in res.get_unpacked_list(): atm.set_serial_number(anum) anum += 1 def enumerate_atoms(entity): """Ensure all atoms in entity have serial_number set.""" while entity.get_parent(): entity = entity.get_parent() # get to top level if "S" == entity.level: for mdl in entity: # each model starts with 1 _enumerate_entity_atoms(mdl) else: # only Chain or Residue, start with 1 _enumerate_entity_atoms(entity) def pdb_date(datestr: str) -> str: """Convert yyyy-mm-dd date to dd-month-yy.""" if datestr: m = re.match(r"(\d{4})-(\d{2})-(\d{2})", datestr) if m: mo = [ "XXX", "JAN", "FEB", "MAR", "APR", "MAY", "JUN", "JUL", "AUG", "SEP", "OCT", "NOV", "DEC", ][int(m.group(2))] datestr = m.group(3) + "-" + mo + "-" + m.group(1)[-2:] return datestr def write_PIC( entity, file, pdbid=None, chainid=None, picFlags: int = IC_Residue.picFlagsDefault, hCut: Optional[Union[float, None]] = None, pCut: Optional[Union[float, None]] = None, ): """Write Protein Internal Coordinates (PIC) to file. See :func:`read_PIC` for file format. See :data:`IC_Residue.pic_accuracy` to vary numeric accuracy. Recurses to lower entity levels (M, C, R). :param Entity entity: Biopython PDB Entity object: S, M, C or R :param Bio.File file: :func:`.as_handle` file name or handle :param str pdbid: PDB idcode, read from entity if not supplied :param char chainid: PDB Chain ID, set from C level entity.id if needed :param int picFlags: boolean flags controlling output, defined in :data:`Bio.PDB.internal_coords.IC_Residue.pic_flags` * "psi", * "omg", * "phi", * "tau", # tau hedron (N-Ca-C) * "chi1", * "chi2", * "chi3", * "chi4", * "chi5", * "pomg", # proline omega * "chi", # chi1 through chi5 * "classic_b", # psi | phi | tau | pomg * "classic", # classic_b | chi * "hedra", # all hedra including bond lengths * "primary", # all primary dihedra * "secondary", # all secondary dihedra (fixed angle from primary dihedra) * "all", # hedra | primary | secondary * "initAtoms", # XYZ coordinates of initial Tau (N-Ca-C) * "bFactors" default is everything:: picFlagsDefault = ( pic_flags.all | pic_flags.initAtoms | pic_flags.bFactors ) Usage in your code:: # just primary dihedra and all hedra picFlags = ( IC_Residue.pic_flags.primary | IC_Residue.pic_flags.hedra ) # no B-factors: picFlags = IC_Residue.picFlagsDefault picFlags &= ~IC_Residue.pic_flags.bFactors :func:`read_PIC` with `(defaults=True)` will use default values for anything left out :param float hCut: default None only write hedra with ref db angle std dev greater than this value :param float pCut: default None only write primary dihedra with ref db angle std dev greater than this value **Default values**: Data averaged from Sep 2019 Dunbrack cullpdb_pc20_res2.2_R1.0. Please see `PISCES: A Protein Sequence Culling Server `_ 'G. Wang and R. L. Dunbrack, Jr. PISCES: a protein sequence culling server. Bioinformatics, 19:1589-1591, 2003.' 'primary' and 'secondary' dihedra are defined in ic_data.py. Specifically, secondary dihedra can be determined as a fixed rotation from another known angle, for example N-Ca-C-O can be estimated from N-Ca-C-N (psi). Standard deviations are listed in /Bio/PDB/ic_data.py for default values, and can be used to limit which hedra and dihedra are defaulted vs. output exact measurements from structure (see hCut and pCut above). Default values for primary dihedra (psi, phi, omega, chi1, etc.) are chosen as the most common integer value, not an average. :raises PDBException: if entity level is A (Atom) :raises Exception: if entity does not have .level attribute """ enumerate_atoms(entity) with as_handle(file, "w") as fp: try: if "A" == entity.level: raise PDBException("No PIC output at Atom level") elif "R" == entity.level: if 2 == entity.is_disordered(): for r in entity.child_dict.values(): _wpr( r, fp, pdbid, chainid, picFlags=picFlags, hCut=hCut, pCut=pCut, ) else: _wpr( entity, fp, pdbid, chainid, picFlags=picFlags, hCut=hCut, pCut=pCut, ) elif "C" == entity.level: if not chainid: chainid = entity.id for res in entity: write_PIC( res, fp, pdbid, chainid, picFlags=picFlags, hCut=hCut, pCut=pCut, ) elif "M" == entity.level: for chn in entity: write_PIC( chn, fp, pdbid, chainid, picFlags=picFlags, hCut=hCut, pCut=pCut, ) elif "S" == entity.level: if not pdbid: pdbid = entity.header.get("idcode", None) hdr = entity.header.get("head", None) dd = pdb_date(entity.header.get("deposition_date", None)) if hdr: fp.write( ("HEADER {:40}{:8} {:4}\n").format( hdr.upper(), (dd or ""), (pdbid or "") ) ) nam = entity.header.get("name", None) if nam: fp.write("TITLE " + nam.upper() + "\n") for mdl in entity: write_PIC( mdl, fp, pdbid, chainid, picFlags=picFlags, hCut=hCut, pCut=pCut, ) else: raise PDBException("Cannot identify level: " + str(entity.level)) except KeyError: raise Exception( "write_PIC: argument is not a Biopython PDB Entity " + str(entity) )