# Copyright (C) 2013 by Yanbo Ye (yeyanbo289@gmail.com) # # This file is part of the Biopython distribution and governed by your # choice of the "Biopython License Agreement" or the "BSD 3-Clause License". # Please see the LICENSE file that should have been included as part of this # package. """Classes and methods for tree construction.""" import itertools import copy import numbers from Bio.Phylo import BaseTree from Bio.Align import Alignment, MultipleSeqAlignment from Bio.Align import substitution_matrices # flake8: noqa class _Matrix: """Base class for distance matrix or scoring matrix. Accepts a list of names and a lower triangular matrix.:: matrix = [[0], [1, 0], [2, 3, 0], [4, 5, 6, 0]] represents the symmetric matrix of [0,1,2,4] [1,0,3,5] [2,3,0,6] [4,5,6,0] :Parameters: names : list names of elements, used for indexing matrix : list nested list of numerical lists in lower triangular format Examples -------- >>> from Bio.Phylo.TreeConstruction import _Matrix >>> names = ['Alpha', 'Beta', 'Gamma', 'Delta'] >>> matrix = [[0], [1, 0], [2, 3, 0], [4, 5, 6, 0]] >>> m = _Matrix(names, matrix) >>> m _Matrix(names=['Alpha', 'Beta', 'Gamma', 'Delta'], matrix=[[0], [1, 0], [2, 3, 0], [4, 5, 6, 0]]) You can use two indices to get or assign an element in the matrix. >>> m[1,2] 3 >>> m['Beta','Gamma'] 3 >>> m['Beta','Gamma'] = 4 >>> m['Beta','Gamma'] 4 Further more, you can use one index to get or assign a list of elements related to that index. >>> m[0] [0, 1, 2, 4] >>> m['Alpha'] [0, 1, 2, 4] >>> m['Alpha'] = [0, 7, 8, 9] >>> m[0] [0, 7, 8, 9] >>> m[0,1] 7 Also you can delete or insert a column&row of elements by index. >>> m _Matrix(names=['Alpha', 'Beta', 'Gamma', 'Delta'], matrix=[[0], [7, 0], [8, 4, 0], [9, 5, 6, 0]]) >>> del m['Alpha'] >>> m _Matrix(names=['Beta', 'Gamma', 'Delta'], matrix=[[0], [4, 0], [5, 6, 0]]) >>> m.insert('Alpha', [0, 7, 8, 9] , 0) >>> m _Matrix(names=['Alpha', 'Beta', 'Gamma', 'Delta'], matrix=[[0], [7, 0], [8, 4, 0], [9, 5, 6, 0]]) """ def __init__(self, names, matrix=None): """Initialize matrix. Arguments are a list of names, and optionally a list of lower triangular matrix data (zero matrix used by default). """ # check names if isinstance(names, list) and all(isinstance(s, str) for s in names): if len(set(names)) == len(names): self.names = names else: raise ValueError("Duplicate names found") else: raise TypeError("'names' should be a list of strings") # check matrix if matrix is None: # create a new one with 0 if matrix is not assigned matrix = [[0] * i for i in range(1, len(self) + 1)] self.matrix = matrix else: # check if all elements are numbers if ( isinstance(matrix, list) and all(isinstance(row, list) for row in matrix) and all( isinstance(item, numbers.Number) for row in matrix for item in row ) ): # check if the same length with names if len(matrix) == len(names): # check if is lower triangle format if [len(row) for row in matrix] == list(range(1, len(self) + 1)): self.matrix = matrix else: raise ValueError("'matrix' should be in lower triangle format") else: raise ValueError("'names' and 'matrix' should be the same size") else: raise TypeError("'matrix' should be a list of numerical lists") def __getitem__(self, item): """Access value(s) by the index(s) or name(s). For a _Matrix object 'dm':: dm[i] get a value list from the given 'i' to others; dm[i, j] get the value between 'i' and 'j'; dm['name'] map name to index first dm['name1', 'name2'] map name to index first """ # Handle single indexing if isinstance(item, (int, str)): index = None if isinstance(item, int): index = item elif isinstance(item, str): if item in self.names: index = self.names.index(item) else: raise ValueError("Item not found.") else: raise TypeError("Invalid index type.") # check index if index > len(self) - 1: raise IndexError("Index out of range.") return [self.matrix[index][i] for i in range(0, index)] + [ self.matrix[i][index] for i in range(index, len(self)) ] # Handle double indexing elif len(item) == 2: row_index = None col_index = None if all(isinstance(i, int) for i in item): row_index, col_index = item elif all(isinstance(i, str) for i in item): row_name, col_name = item if row_name in self.names and col_name in self.names: row_index = self.names.index(row_name) col_index = self.names.index(col_name) else: raise ValueError("Item not found.") else: raise TypeError("Invalid index type.") # check index if row_index > len(self) - 1 or col_index > len(self) - 1: raise IndexError("Index out of range.") if row_index > col_index: return self.matrix[row_index][col_index] else: return self.matrix[col_index][row_index] else: raise TypeError("Invalid index type.") def __setitem__(self, item, value): """Set value by the index(s) or name(s). Similar to __getitem__:: dm[1] = [1, 0, 3, 4] set values from '1' to others; dm[i, j] = 2 set the value from 'i' to 'j' """ # Handle single indexing if isinstance(item, (int, str)): index = None if isinstance(item, int): index = item elif isinstance(item, str): if item in self.names: index = self.names.index(item) else: raise ValueError("Item not found.") else: raise TypeError("Invalid index type.") # check index if index > len(self) - 1: raise IndexError("Index out of range.") # check and assign value if isinstance(value, list) and all( isinstance(n, numbers.Number) for n in value ): if len(value) == len(self): for i in range(0, index): self.matrix[index][i] = value[i] for i in range(index, len(self)): self.matrix[i][index] = value[i] else: raise ValueError("Value not the same size.") else: raise TypeError("Invalid value type.") # Handle double indexing elif len(item) == 2: row_index = None col_index = None if all(isinstance(i, int) for i in item): row_index, col_index = item elif all(isinstance(i, str) for i in item): row_name, col_name = item if row_name in self.names and col_name in self.names: row_index = self.names.index(row_name) col_index = self.names.index(col_name) else: raise ValueError("Item not found.") else: raise TypeError("Invalid index type.") # check index if row_index > len(self) - 1 or col_index > len(self) - 1: raise IndexError("Index out of range.") # check and assign value if isinstance(value, numbers.Number): if row_index > col_index: self.matrix[row_index][col_index] = value else: self.matrix[col_index][row_index] = value else: raise TypeError("Invalid value type.") else: raise TypeError("Invalid index type.") def __delitem__(self, item): """Delete related distances by the index or name.""" index = None if isinstance(item, int): index = item elif isinstance(item, str): index = self.names.index(item) else: raise TypeError("Invalid index type.") # remove distances related to index for i in range(index + 1, len(self)): del self.matrix[i][index] del self.matrix[index] # remove name del self.names[index] def insert(self, name, value, index=None): """Insert distances given the name and value. :Parameters: name : str name of a row/col to be inserted value : list a row/col of values to be inserted """ if isinstance(name, str): # insert at the given index or at the end if index is None: index = len(self) if not isinstance(index, int): raise TypeError("Invalid index type.") # insert name self.names.insert(index, name) # insert elements of 0, to be assigned self.matrix.insert(index, [0] * index) for i in range(index, len(self)): self.matrix[i].insert(index, 0) # assign value self[index] = value else: raise TypeError("Invalid name type.") def __len__(self): """Matrix length.""" return len(self.names) def __repr__(self): """Return Matrix as a string.""" return self.__class__.__name__ + "(names=%s, matrix=%s)" % tuple( map(repr, (self.names, self.matrix)) ) def __str__(self): """Get a lower triangular matrix string.""" matrix_string = "\n".join( [ self.names[i] + "\t" + "\t".join([format(n, "f") for n in self.matrix[i]]) for i in range(0, len(self)) ] ) matrix_string = matrix_string + "\n\t" + "\t".join(self.names) return matrix_string.expandtabs(tabsize=4) class DistanceMatrix(_Matrix): """Distance matrix class that can be used for distance based tree algorithms. All diagonal elements will be zero no matter what the users provide. """ def __init__(self, names, matrix=None): """Initialize the class.""" _Matrix.__init__(self, names, matrix) self._set_zero_diagonal() def __setitem__(self, item, value): """Set Matrix's items to values.""" _Matrix.__setitem__(self, item, value) self._set_zero_diagonal() def _set_zero_diagonal(self): """Set all diagonal elements to zero (PRIVATE).""" for i in range(0, len(self)): self.matrix[i][i] = 0 def format_phylip(self, handle): """Write data in Phylip format to a given file-like object or handle. The output stream is the input distance matrix format used with Phylip programs (e.g. 'neighbor'). See: http://evolution.genetics.washington.edu/phylip/doc/neighbor.html :Parameters: handle : file or file-like object A writeable text mode file handle or other object supporting the 'write' method, such as StringIO or sys.stdout. """ handle.write(f" {len(self.names)}\n") # Phylip needs space-separated, vertically aligned columns name_width = max(12, max(map(len, self.names)) + 1) value_fmts = ("{" + str(x) + ":.4f}" for x in range(1, len(self.matrix) + 1)) row_fmt = "{0:" + str(name_width) + "s}" + " ".join(value_fmts) + "\n" for i, (name, values) in enumerate(zip(self.names, self.matrix)): # Mirror the matrix values across the diagonal mirror_values = (self.matrix[j][i] for j in range(i + 1, len(self.matrix))) fields = itertools.chain([name], values, mirror_values) handle.write(row_fmt.format(*fields)) # Shim for compatibility with Biopython<1.70 (#1304) _DistanceMatrix = DistanceMatrix class DistanceCalculator: """Calculates the distance matrix from a DNA or protein sequence alignment. This class calculates the distance matrix from a multiple sequence alignment of DNA or protein sequences, and the given name of the substitution model. Currently only scoring matrices are used. :Parameters: model : str Name of the model matrix to be used to calculate distance. The attribute ``dna_models`` contains the available model names for DNA sequences and ``protein_models`` for protein sequences. Examples -------- Loading a small PHYLIP alignment from which to compute distances:: >>> from Bio.Phylo.TreeConstruction import DistanceCalculator >>> from Bio import AlignIO >>> aln = AlignIO.read(open('TreeConstruction/msa.phy'), 'phylip') >>> print(aln) # doctest:+NORMALIZE_WHITESPACE Alignment with 5 rows and 13 columns AACGTGGCCACAT Alpha AAGGTCGCCACAC Beta CAGTTCGCCACAA Gamma GAGATTTCCGCCT Delta GAGATCTCCGCCC Epsilon DNA calculator with 'identity' model:: >>> calculator = DistanceCalculator('identity') >>> dm = calculator.get_distance(aln) >>> print(dm) # doctest:+NORMALIZE_WHITESPACE Alpha 0.000000 Beta 0.230769 0.000000 Gamma 0.384615 0.230769 0.000000 Delta 0.538462 0.538462 0.538462 0.000000 Epsilon 0.615385 0.384615 0.461538 0.153846 0.000000 Alpha Beta Gamma Delta Epsilon Protein calculator with 'blosum62' model:: >>> calculator = DistanceCalculator('blosum62') >>> dm = calculator.get_distance(aln) >>> print(dm) # doctest:+NORMALIZE_WHITESPACE Alpha 0.000000 Beta 0.369048 0.000000 Gamma 0.493976 0.250000 0.000000 Delta 0.585366 0.547619 0.566265 0.000000 Epsilon 0.700000 0.355556 0.488889 0.222222 0.000000 Alpha Beta Gamma Delta Epsilon Same calculation, using the new Alignment object:: >>> from Bio.Phylo.TreeConstruction import DistanceCalculator >>> from Bio import Align >>> aln = Align.read('TreeConstruction/msa.phy', 'phylip') >>> print(aln) # doctest:+NORMALIZE_WHITESPACE Alpha 0 AACGTGGCCACAT 13 Beta 0 AAGGTCGCCACAC 13 Gamma 0 CAGTTCGCCACAA 13 Delta 0 GAGATTTCCGCCT 13 Epsilon 0 GAGATCTCCGCCC 13 DNA calculator with 'identity' model:: >>> calculator = DistanceCalculator('identity') >>> dm = calculator.get_distance(aln) >>> print(dm) # doctest:+NORMALIZE_WHITESPACE Alpha 0.000000 Beta 0.230769 0.000000 Gamma 0.384615 0.230769 0.000000 Delta 0.538462 0.538462 0.538462 0.000000 Epsilon 0.615385 0.384615 0.461538 0.153846 0.000000 Alpha Beta Gamma Delta Epsilon Protein calculator with 'blosum62' model:: >>> calculator = DistanceCalculator('blosum62') >>> dm = calculator.get_distance(aln) >>> print(dm) # doctest:+NORMALIZE_WHITESPACE Alpha 0.000000 Beta 0.369048 0.000000 Gamma 0.493976 0.250000 0.000000 Delta 0.585366 0.547619 0.566265 0.000000 Epsilon 0.700000 0.355556 0.488889 0.222222 0.000000 Alpha Beta Gamma Delta Epsilon """ protein_alphabet = set("ABCDEFGHIKLMNPQRSTVWXYZ") dna_models = [] protein_models = [] # matrices available names = substitution_matrices.load() for name in names: matrix = substitution_matrices.load(name) if name == "NUC.4.4": # BLAST nucleic acid scoring matrix name = "blastn" else: name = name.lower() if protein_alphabet.issubset(set(matrix.alphabet)): protein_models.append(name) else: dna_models.append(name) del protein_alphabet del name del names del matrix models = ["identity"] + dna_models + protein_models def __init__(self, model="identity", skip_letters=None): """Initialize with a distance model.""" # Shim for backward compatibility (#491) if skip_letters: self.skip_letters = skip_letters elif model == "identity": self.skip_letters = () else: self.skip_letters = ("-", "*") if model == "identity": self.scoring_matrix = None elif model in self.models: if model == "blastn": name = "NUC.4.4" else: name = model.upper() self.scoring_matrix = substitution_matrices.load(name) else: raise ValueError( "Model not supported. Available models: " + ", ".join(self.models) ) def _pairwise(self, seq1, seq2): """Calculate pairwise distance from two sequences (PRIVATE). Returns a value between 0 (identical sequences) and 1 (completely different, or seq1 is an empty string.) """ score = 0 max_score = 0 if self.scoring_matrix is None: # Score by character identity, not skipping any special letters score = sum( l1 == l2 for l1, l2 in zip(seq1, seq2) if l1 not in self.skip_letters and l2 not in self.skip_letters ) max_score = len(seq1) else: max_score1 = 0 max_score2 = 0 for i in range(0, len(seq1)): l1 = seq1[i] l2 = seq2[i] if l1 in self.skip_letters or l2 in self.skip_letters: continue try: max_score1 += self.scoring_matrix[l1, l1] except IndexError: raise ValueError( f"Bad letter '{l1}' in sequence '{seq1.id}' at position '{i}'" ) from None try: max_score2 += self.scoring_matrix[l2, l2] except IndexError: raise ValueError( f"Bad letter '{l2}' in sequence '{seq2.id}' at position '{i}'" ) from None score += self.scoring_matrix[l1, l2] # Take the higher score if the matrix is asymmetrical max_score = max(max_score1, max_score2) if max_score == 0: return 1 # max possible scaled distance return 1 - (score / max_score) def get_distance(self, msa): """Return a DistanceMatrix for an Alignment or MultipleSeqAlignment object. :Parameters: msa : Alignment or MultipleSeqAlignment object representing a DNA or protein multiple sequence alignment. """ if isinstance(msa, Alignment): names = [s.id for s in msa.sequences] dm = DistanceMatrix(names) n = len(names) for i1 in range(n): for i2 in range(i1): dm[names[i1], names[i2]] = self._pairwise(msa[i1], msa[i2]) elif isinstance(msa, MultipleSeqAlignment): names = [s.id for s in msa] dm = DistanceMatrix(names) for seq1, seq2 in itertools.combinations(msa, 2): dm[seq1.id, seq2.id] = self._pairwise(seq1, seq2) else: raise TypeError( "Must provide an Alignment object or a MultipleSeqAlignment object." ) return dm class TreeConstructor: """Base class for all tree constructor.""" def build_tree(self, msa): """Caller to build the tree from an Alignment or MultipleSeqAlignment object. This should be implemented in subclass. """ raise NotImplementedError("Method not implemented!") class DistanceTreeConstructor(TreeConstructor): """Distance based tree constructor. :Parameters: method : str Distance tree construction method, 'nj'(default) or 'upgma'. distance_calculator : DistanceCalculator The distance matrix calculator for multiple sequence alignment. It must be provided if ``build_tree`` will be called. Examples -------- Loading a small PHYLIP alignment from which to compute distances, and then build a upgma Tree:: >>> from Bio.Phylo.TreeConstruction import DistanceTreeConstructor >>> from Bio.Phylo.TreeConstruction import DistanceCalculator >>> from Bio import AlignIO >>> aln = AlignIO.read(open('TreeConstruction/msa.phy'), 'phylip') >>> constructor = DistanceTreeConstructor() >>> calculator = DistanceCalculator('identity') >>> dm = calculator.get_distance(aln) >>> upgmatree = constructor.upgma(dm) >>> print(upgmatree) Tree(rooted=True) Clade(branch_length=0, name='Inner4') Clade(branch_length=0.18749999999999994, name='Inner1') Clade(branch_length=0.07692307692307693, name='Epsilon') Clade(branch_length=0.07692307692307693, name='Delta') Clade(branch_length=0.11057692307692304, name='Inner3') Clade(branch_length=0.038461538461538464, name='Inner2') Clade(branch_length=0.11538461538461536, name='Gamma') Clade(branch_length=0.11538461538461536, name='Beta') Clade(branch_length=0.15384615384615383, name='Alpha') Build a NJ Tree:: >>> njtree = constructor.nj(dm) >>> print(njtree) Tree(rooted=False) Clade(branch_length=0, name='Inner3') Clade(branch_length=0.18269230769230765, name='Alpha') Clade(branch_length=0.04807692307692307, name='Beta') Clade(branch_length=0.04807692307692307, name='Inner2') Clade(branch_length=0.27884615384615385, name='Inner1') Clade(branch_length=0.051282051282051266, name='Epsilon') Clade(branch_length=0.10256410256410259, name='Delta') Clade(branch_length=0.14423076923076922, name='Gamma') Same example, using the new Alignment class:: >>> from Bio.Phylo.TreeConstruction import DistanceTreeConstructor >>> from Bio.Phylo.TreeConstruction import DistanceCalculator >>> from Bio import Align >>> aln = Align.read(open('TreeConstruction/msa.phy'), 'phylip') >>> constructor = DistanceTreeConstructor() >>> calculator = DistanceCalculator('identity') >>> dm = calculator.get_distance(aln) >>> upgmatree = constructor.upgma(dm) >>> print(upgmatree) Tree(rooted=True) Clade(branch_length=0, name='Inner4') Clade(branch_length=0.18749999999999994, name='Inner1') Clade(branch_length=0.07692307692307693, name='Epsilon') Clade(branch_length=0.07692307692307693, name='Delta') Clade(branch_length=0.11057692307692304, name='Inner3') Clade(branch_length=0.038461538461538464, name='Inner2') Clade(branch_length=0.11538461538461536, name='Gamma') Clade(branch_length=0.11538461538461536, name='Beta') Clade(branch_length=0.15384615384615383, name='Alpha') Build a NJ Tree:: >>> njtree = constructor.nj(dm) >>> print(njtree) Tree(rooted=False) Clade(branch_length=0, name='Inner3') Clade(branch_length=0.18269230769230765, name='Alpha') Clade(branch_length=0.04807692307692307, name='Beta') Clade(branch_length=0.04807692307692307, name='Inner2') Clade(branch_length=0.27884615384615385, name='Inner1') Clade(branch_length=0.051282051282051266, name='Epsilon') Clade(branch_length=0.10256410256410259, name='Delta') Clade(branch_length=0.14423076923076922, name='Gamma') """ methods = ["nj", "upgma"] def __init__(self, distance_calculator=None, method="nj"): """Initialize the class.""" if distance_calculator is None or isinstance( distance_calculator, DistanceCalculator ): self.distance_calculator = distance_calculator else: raise TypeError("Must provide a DistanceCalculator object.") if method in self.methods: self.method = method else: raise TypeError( "Bad method: " + method + ". Available methods: " + ", ".join(self.methods) ) def build_tree(self, msa): """Construct and return a Tree, Neighbor Joining or UPGMA.""" if self.distance_calculator: dm = self.distance_calculator.get_distance(msa) tree = None if self.method == "upgma": tree = self.upgma(dm) else: tree = self.nj(dm) return tree else: raise TypeError("Must provide a DistanceCalculator object.") def upgma(self, distance_matrix): """Construct and return an UPGMA tree. Constructs and returns an Unweighted Pair Group Method with Arithmetic mean (UPGMA) tree. :Parameters: distance_matrix : DistanceMatrix The distance matrix for tree construction. """ if not isinstance(distance_matrix, DistanceMatrix): raise TypeError("Must provide a DistanceMatrix object.") # make a copy of the distance matrix to be used dm = copy.deepcopy(distance_matrix) # init terminal clades clades = [BaseTree.Clade(None, name) for name in dm.names] # init minimum index min_i = 0 min_j = 0 inner_count = 0 while len(dm) > 1: min_dist = dm[1, 0] # find minimum index for i in range(1, len(dm)): for j in range(0, i): if min_dist >= dm[i, j]: min_dist = dm[i, j] min_i = i min_j = j # create clade clade1 = clades[min_i] clade2 = clades[min_j] inner_count += 1 inner_clade = BaseTree.Clade(None, "Inner" + str(inner_count)) inner_clade.clades.append(clade1) inner_clade.clades.append(clade2) # assign branch length if clade1.is_terminal(): clade1.branch_length = min_dist / 2 else: clade1.branch_length = min_dist / 2 - self._height_of(clade1) if clade2.is_terminal(): clade2.branch_length = min_dist / 2 else: clade2.branch_length = min_dist / 2 - self._height_of(clade2) # update node list clades[min_j] = inner_clade del clades[min_i] # rebuild distance matrix, # set the distances of new node at the index of min_j for k in range(0, len(dm)): if k != min_i and k != min_j: dm[min_j, k] = (dm[min_i, k] + dm[min_j, k]) / 2 dm.names[min_j] = "Inner" + str(inner_count) del dm[min_i] inner_clade.branch_length = 0 return BaseTree.Tree(inner_clade) def nj(self, distance_matrix): """Construct and return a Neighbor Joining tree. :Parameters: distance_matrix : DistanceMatrix The distance matrix for tree construction. """ if not isinstance(distance_matrix, DistanceMatrix): raise TypeError("Must provide a DistanceMatrix object.") # make a copy of the distance matrix to be used dm = copy.deepcopy(distance_matrix) # init terminal clades clades = [BaseTree.Clade(None, name) for name in dm.names] # init node distance node_dist = [0] * len(dm) # init minimum index min_i = 0 min_j = 0 inner_count = 0 # special cases for Minimum Alignment Matrices if len(dm) == 1: root = clades[0] return BaseTree.Tree(root, rooted=False) elif len(dm) == 2: # minimum distance will always be [1,0] min_i = 1 min_j = 0 clade1 = clades[min_i] clade2 = clades[min_j] clade1.branch_length = dm[min_i, min_j] / 2.0 clade2.branch_length = dm[min_i, min_j] - clade1.branch_length inner_clade = BaseTree.Clade(None, "Inner") inner_clade.clades.append(clade1) inner_clade.clades.append(clade2) clades[0] = inner_clade root = clades[0] return BaseTree.Tree(root, rooted=False) while len(dm) > 2: # calculate nodeDist for i in range(0, len(dm)): node_dist[i] = 0 for j in range(0, len(dm)): node_dist[i] += dm[i, j] node_dist[i] = node_dist[i] / (len(dm) - 2) # find minimum distance pair min_dist = dm[1, 0] - node_dist[1] - node_dist[0] min_i = 0 min_j = 1 for i in range(1, len(dm)): for j in range(0, i): temp = dm[i, j] - node_dist[i] - node_dist[j] if min_dist > temp: min_dist = temp min_i = i min_j = j # create clade clade1 = clades[min_i] clade2 = clades[min_j] inner_count += 1 inner_clade = BaseTree.Clade(None, "Inner" + str(inner_count)) inner_clade.clades.append(clade1) inner_clade.clades.append(clade2) # assign branch length clade1.branch_length = ( dm[min_i, min_j] + node_dist[min_i] - node_dist[min_j] ) / 2.0 clade2.branch_length = dm[min_i, min_j] - clade1.branch_length # update node list clades[min_j] = inner_clade del clades[min_i] # rebuild distance matrix, # set the distances of new node at the index of min_j for k in range(0, len(dm)): if k != min_i and k != min_j: dm[min_j, k] = ( dm[min_i, k] + dm[min_j, k] - dm[min_i, min_j] ) / 2.0 dm.names[min_j] = "Inner" + str(inner_count) del dm[min_i] # set the last clade as one of the child of the inner_clade root = None if clades[0] == inner_clade: clades[0].branch_length = 0 clades[1].branch_length = dm[1, 0] clades[0].clades.append(clades[1]) root = clades[0] else: clades[0].branch_length = dm[1, 0] clades[1].branch_length = 0 clades[1].clades.append(clades[0]) root = clades[1] return BaseTree.Tree(root, rooted=False) def _height_of(self, clade): """Calculate clade height -- the longest path to any terminal (PRIVATE).""" height = 0 if clade.is_terminal(): height = clade.branch_length else: height = height + max(self._height_of(c) for c in clade.clades) return height # #################### Tree Scoring and Searching Classes ##################### class Scorer: """Base class for all tree scoring methods.""" def get_score(self, tree, alignment): """Caller to get the score of a tree for the given alignment. This should be implemented in subclass. """ raise NotImplementedError("Method not implemented!") class TreeSearcher: """Base class for all tree searching methods.""" def search(self, starting_tree, alignment): """Caller to search the best tree with a starting tree. This should be implemented in subclass. """ raise NotImplementedError("Method not implemented!") class NNITreeSearcher(TreeSearcher): """Tree searching with Nearest Neighbor Interchanges (NNI) algorithm. :Parameters: scorer : ParsimonyScorer parsimony scorer to calculate the parsimony score of different trees during NNI algorithm. """ def __init__(self, scorer): """Initialize the class.""" if isinstance(scorer, Scorer): self.scorer = scorer else: raise TypeError("Must provide a Scorer object.") def search(self, starting_tree, alignment): """Implement the TreeSearcher.search method. :Parameters: starting_tree : Tree starting tree of NNI method. alignment : Alignment or MultipleSeqAlignment object multiple sequence alignment used to calculate parsimony score of different NNI trees. """ return self._nni(starting_tree, alignment) def _nni(self, starting_tree, alignment): """Search for the best parsimony tree using the NNI algorithm (PRIVATE).""" best_tree = starting_tree while True: best_score = self.scorer.get_score(best_tree, alignment) temp = best_score for t in self._get_neighbors(best_tree): score = self.scorer.get_score(t, alignment) if score < best_score: best_score = score best_tree = t # stop if no smaller score exist if best_score >= temp: break return best_tree def _get_neighbors(self, tree): """Get all neighbor trees of the given tree (PRIVATE). Currently only for binary rooted trees. """ # make child to parent dict parents = {} for clade in tree.find_clades(): if clade != tree.root: node_path = tree.get_path(clade) # cannot get the parent if the parent is root. Bug? if len(node_path) == 1: parents[clade] = tree.root else: parents[clade] = node_path[-2] neighbors = [] root_childs = [] for clade in tree.get_nonterminals(order="level"): if clade == tree.root: left = clade.clades[0] right = clade.clades[1] root_childs.append(left) root_childs.append(right) if not left.is_terminal() and not right.is_terminal(): # make changes around the left_left clade # left_left = left.clades[0] left_right = left.clades[1] right_left = right.clades[0] right_right = right.clades[1] # neighbor 1 (left_left + right_right) del left.clades[1] del right.clades[1] left.clades.append(right_right) right.clades.append(left_right) temp_tree = copy.deepcopy(tree) neighbors.append(temp_tree) # neighbor 2 (left_left + right_left) del left.clades[1] del right.clades[0] left.clades.append(right_left) right.clades.append(right_right) temp_tree = copy.deepcopy(tree) neighbors.append(temp_tree) # change back (left_left + left_right) del left.clades[1] del right.clades[0] left.clades.append(left_right) right.clades.insert(0, right_left) elif clade in root_childs: # skip root child continue else: # method for other clades # make changes around the parent clade left = clade.clades[0] right = clade.clades[1] parent = parents[clade] if clade == parent.clades[0]: sister = parent.clades[1] # neighbor 1 (parent + right) del parent.clades[1] del clade.clades[1] parent.clades.append(right) clade.clades.append(sister) temp_tree = copy.deepcopy(tree) neighbors.append(temp_tree) # neighbor 2 (parent + left) del parent.clades[1] del clade.clades[0] parent.clades.append(left) clade.clades.append(right) temp_tree = copy.deepcopy(tree) neighbors.append(temp_tree) # change back (parent + sister) del parent.clades[1] del clade.clades[0] parent.clades.append(sister) clade.clades.insert(0, left) else: sister = parent.clades[0] # neighbor 1 (parent + right) del parent.clades[0] del clade.clades[1] parent.clades.insert(0, right) clade.clades.append(sister) temp_tree = copy.deepcopy(tree) neighbors.append(temp_tree) # neighbor 2 (parent + left) del parent.clades[0] del clade.clades[0] parent.clades.insert(0, left) clade.clades.append(right) temp_tree = copy.deepcopy(tree) neighbors.append(temp_tree) # change back (parent + sister) del parent.clades[0] del clade.clades[0] parent.clades.insert(0, sister) clade.clades.insert(0, left) return neighbors # ######################## Parsimony Classes ########################## class ParsimonyScorer(Scorer): """Parsimony scorer with a scoring matrix. This is a combination of Fitch algorithm and Sankoff algorithm. See ParsimonyTreeConstructor for usage. :Parameters: matrix : _Matrix scoring matrix used in parsimony score calculation. """ def __init__(self, matrix=None): """Initialize the class.""" if not matrix or isinstance(matrix, _Matrix): self.matrix = matrix else: raise TypeError("Must provide a _Matrix object.") def get_score(self, tree, alignment): """Calculate parsimony score using the Fitch algorithm. Calculate and return the parsimony score given a tree and the MSA using either the Fitch algorithm (without a penalty matrix) or the Sankoff algorithm (with a matrix). """ # make sure the tree is rooted and bifurcating if not tree.is_bifurcating(): raise ValueError("The tree provided should be bifurcating.") if not tree.rooted: tree.root_at_midpoint() # sort tree terminals and alignment terms = tree.get_terminals() terms.sort(key=lambda term: term.name) alignment.sort() if isinstance(alignment, MultipleSeqAlignment): if not all(t.name == a.id for t, a in zip(terms, alignment)): raise ValueError( "Taxon names of the input tree should be the same with the alignment." ) else: # Alignment object if not all(t.name == s.id for t, s in zip(terms, alignment.sequences)): raise ValueError( "Taxon names of the input tree should be the same with the alignment." ) # term_align = dict(zip(terms, alignment)) score = 0 for i in range(len(alignment[0])): # parsimony score for column_i score_i = 0 # get column column_i = alignment[:, i] # skip non-informative column if column_i == len(column_i) * column_i[0]: continue # start calculating score_i using the tree and column_i # Fitch algorithm without the penalty matrix if not self.matrix: # init by mapping terminal clades and states in column_i clade_states = dict(zip(terms, [{c} for c in column_i])) for clade in tree.get_nonterminals(order="postorder"): clade_childs = clade.clades left_state = clade_states[clade_childs[0]] right_state = clade_states[clade_childs[1]] state = left_state & right_state if not state: state = left_state | right_state score_i += 1 clade_states[clade] = state # Sankoff algorithm with the penalty matrix else: inf = float("inf") # init score arrays for terminal clades alphabet = self.matrix.names length = len(alphabet) clade_scores = {} for j in range(len(column_i)): array = [inf] * length index = alphabet.index(column_i[j]) array[index] = 0 clade_scores[terms[j]] = array # bottom up calculation for clade in tree.get_nonterminals(order="postorder"): clade_childs = clade.clades left_score = clade_scores[clade_childs[0]] right_score = clade_scores[clade_childs[1]] array = [] for m in range(length): min_l = inf min_r = inf for n in range(length): sl = self.matrix[alphabet[m], alphabet[n]] + left_score[n] sr = self.matrix[alphabet[m], alphabet[n]] + right_score[n] if min_l > sl: min_l = sl if min_r > sr: min_r = sr array.append(min_l + min_r) clade_scores[clade] = array # minimum from root score score_i = min(array) # TODO: resolve internal states score += score_i return score class ParsimonyTreeConstructor(TreeConstructor): """Parsimony tree constructor. :Parameters: searcher : TreeSearcher tree searcher to search the best parsimony tree. starting_tree : Tree starting tree provided to the searcher. Examples -------- We will load an alignment, and then load various trees which have already been computed from it:: >>> from Bio import AlignIO, Phylo >>> aln = AlignIO.read(open('TreeConstruction/msa.phy'), 'phylip') >>> print(aln) Alignment with 5 rows and 13 columns AACGTGGCCACAT Alpha AAGGTCGCCACAC Beta CAGTTCGCCACAA Gamma GAGATTTCCGCCT Delta GAGATCTCCGCCC Epsilon Load a starting tree:: >>> starting_tree = Phylo.read('TreeConstruction/nj.tre', 'newick') >>> print(starting_tree) Tree(rooted=False, weight=1.0) Clade(branch_length=0.0, name='Inner3') Clade(branch_length=0.01421, name='Inner2') Clade(branch_length=0.23927, name='Inner1') Clade(branch_length=0.08531, name='Epsilon') Clade(branch_length=0.13691, name='Delta') Clade(branch_length=0.2923, name='Alpha') Clade(branch_length=0.07477, name='Beta') Clade(branch_length=0.17523, name='Gamma') Build the Parsimony tree from the starting tree:: >>> scorer = Phylo.TreeConstruction.ParsimonyScorer() >>> searcher = Phylo.TreeConstruction.NNITreeSearcher(scorer) >>> constructor = Phylo.TreeConstruction.ParsimonyTreeConstructor(searcher, starting_tree) >>> pars_tree = constructor.build_tree(aln) >>> print(pars_tree) Tree(rooted=True, weight=1.0) Clade(branch_length=0.0) Clade(branch_length=0.19732999999999998, name='Inner1') Clade(branch_length=0.13691, name='Delta') Clade(branch_length=0.08531, name='Epsilon') Clade(branch_length=0.04194000000000003, name='Inner2') Clade(branch_length=0.01421, name='Inner3') Clade(branch_length=0.17523, name='Gamma') Clade(branch_length=0.07477, name='Beta') Clade(branch_length=0.2923, name='Alpha') Same example, using the new Alignment class:: >>> from Bio import Align, Phylo >>> alignment = Align.read(open('TreeConstruction/msa.phy'), 'phylip') >>> print(alignment) Alpha 0 AACGTGGCCACAT 13 Beta 0 AAGGTCGCCACAC 13 Gamma 0 CAGTTCGCCACAA 13 Delta 0 GAGATTTCCGCCT 13 Epsilon 0 GAGATCTCCGCCC 13 Load a starting tree:: >>> starting_tree = Phylo.read('TreeConstruction/nj.tre', 'newick') >>> print(starting_tree) Tree(rooted=False, weight=1.0) Clade(branch_length=0.0, name='Inner3') Clade(branch_length=0.01421, name='Inner2') Clade(branch_length=0.23927, name='Inner1') Clade(branch_length=0.08531, name='Epsilon') Clade(branch_length=0.13691, name='Delta') Clade(branch_length=0.2923, name='Alpha') Clade(branch_length=0.07477, name='Beta') Clade(branch_length=0.17523, name='Gamma') Build the Parsimony tree from the starting tree:: >>> scorer = Phylo.TreeConstruction.ParsimonyScorer() >>> searcher = Phylo.TreeConstruction.NNITreeSearcher(scorer) >>> constructor = Phylo.TreeConstruction.ParsimonyTreeConstructor(searcher, starting_tree) >>> pars_tree = constructor.build_tree(alignment) >>> print(pars_tree) Tree(rooted=True, weight=1.0) Clade(branch_length=0.0) Clade(branch_length=0.19732999999999998, name='Inner1') Clade(branch_length=0.13691, name='Delta') Clade(branch_length=0.08531, name='Epsilon') Clade(branch_length=0.04194000000000003, name='Inner2') Clade(branch_length=0.01421, name='Inner3') Clade(branch_length=0.17523, name='Gamma') Clade(branch_length=0.07477, name='Beta') Clade(branch_length=0.2923, name='Alpha') """ def __init__(self, searcher, starting_tree=None): """Initialize the class.""" self.searcher = searcher self.starting_tree = starting_tree def build_tree(self, alignment): """Build the tree. :Parameters: alignment : MultipleSeqAlignment multiple sequence alignment to calculate parsimony tree. """ # if starting_tree is none, # create a upgma tree with 'identity' scoring matrix if self.starting_tree is None: dtc = DistanceTreeConstructor(DistanceCalculator("identity"), "upgma") self.starting_tree = dtc.build_tree(alignment) return self.searcher.search(self.starting_tree, alignment) if __name__ == "__main__": from Bio._utils import run_doctest run_doctest()