# Copyright 2019-21 by Robert T. Miller. All rights reserved. # This file is part of the Biopython distribution and governed by your # choice of the "Biopython License Agreement" or the "BSD 3-Clause License". # Please see the LICENSE file that should have been included as part of this # package. """SCADIO: write OpenSCAD program to create protein structure 3D model. 3D printing a protein structure is a non-trivial exercise due to the overall complexity and the general requirement for supporting overhang regions while printing. This software is a path to generating a model for printing (e.g. an STL file), and does not address the issues around converting the model to a physical product. OpenSCAD can create a printable model from the script this software produces. MeshMixer , various slicer software, and the 3D printer technology available to you provide options for addressing the problems around physically rendering the model. The model generated here consists of OpenSCAD primitives, e.g. spheres and cylinders, representing individual atoms and bonds in an explicit model of a protein structure. The benefit is that individual atoms/bonds may be selected for specific print customizations relevant to 3D printing (such as rotatable bond mechanisms or hydrogen bond magnets). Alternatively, use e.g. Chimera to render a structure as ribbons or similar for printing as a single object. I suggest generating your initial model using the OpenSCAD script provided here, then modifying that script according to your needs. Changing the atomScale and bondRadius values can simplify the model by removing gaps and the corresponding need for supports, or you may wish to modify the hedronDispatch() routine to select residues or chain sections for printing separately and subsequently joining with rotatable bonds. During this development phase you will likely have your version include only the data matrices generated here, by using the `includeCode=False` option to write_SCAD(). An example project using rotatable backbone and magnetic hydrogen bonds is at . """ # import re from Bio.File import as_handle from Bio.PDB.PDBExceptions import PDBException from Bio.PDB.internal_coords import IC_Residue, IC_Chain # from Bio.PDB.Structure import Structure # from Bio.PDB.Residue import Residue from Bio.PDB.vectors import homog_scale_mtx import numpy as np # type: ignore def _scale_residue(res, scale, scaleMtx): if res.internal_coord: res.internal_coord.applyMtx(scaleMtx) if res.internal_coord.gly_Cbeta: res.internal_coord.scale = scale def write_SCAD( entity, file, scale=None, pdbid=None, backboneOnly=False, includeCode=True, maxPeptideBond=None, start=None, fin=None, handle="protein", ): """Write hedron assembly to file as OpenSCAD matrices. This routine calls both :meth:`.IC_Chain.internal_to_atom_coordinates` and :meth:`.IC_Chain.atom_to_internal_coordinates` due to requirements for scaling, explicit bonds around rings, and setting the coordinate space of the output model. Output data format is primarily: - matrix for each hedron: len1, angle2, len3, atom covalent bond class, flags to indicate atom/bond represented in previous hedron (OpenSCAD very slow with redundant overlapping elements), flags for bond features - transform matrices to assemble each hedron into residue dihedra sets - transform matrices for each residue to position in chain OpenSCAD software is included in this Python file to process these matrices into a model suitable for a 3D printing project. :param entity: Biopython PDB :class:`.Structure` entity structure data to export :param file: Bipoython :func:`.as_handle` filename or open file pointer file to write data to :param float scale: units (usually mm) per angstrom for STL output, written in output :param str pdbid: PDB idcode, written in output. Defaults to '0PDB' if not supplied and no 'idcode' set in entity :param bool backboneOnly: default False. Do not output side chain data past Cbeta if True :param bool includeCode: default True. Include OpenSCAD software (inline below) so output file can be loaded into OpenSCAD; if False, output data matrices only :param float maxPeptideBond: Optional default None. Override the cut-off in IC_Chain class (default 1.4) for detecting chain breaks. If your target has chain breaks, pass a large number here to create a very long 'bond' spanning the break. :param int start,fin: default None Parameters for internal_to_atom_coords() to limit chain segment. :param str handle: default 'protein' name for top level of generated OpenSCAD matrix structure See :meth:`.IC_Residue.set_flexible` to set flags for specific residues to have rotatable bonds, and :meth:`.IC_Residue.set_hbond` to include cavities for small magnets to work as hydrogen bonds. See for implementation example. The OpenSCAD code explicitly creates spheres and cylinders to represent atoms and bonds in a 3D model. Options are available to support rotatable bonds and magnetic hydrogen bonds. Matrices are written to link, enumerate and describe residues, dihedra, hedra, and chains, mirroring contents of the relevant IC_* data structures. The OpenSCAD matrix of hedra has additional information as follows: * the atom and bond state (single, double, resonance) are logged so that covalent radii may be used for atom spheres in the 3D models * bonds and atoms are tracked so that each is only created once * bond options for rotation and magnet holders for hydrogen bonds may be specified (see :meth:`.IC_Residue.set_flexible` and :meth:`.IC_Residue.set_hbond` ) Note the application of :data:`Bio.PDB.internal_coords.IC_Chain.MaxPeptideBond` : missing residues may be linked (joining chain segments with arbitrarily long bonds) by setting this to a large value. Note this uses the serial assembly per residue, placing each residue at the origin and supplying the coordinate space transform to OpenaSCAD All ALTLOC (disordered) residues and atoms are written to the output model. (see :data:`Bio.PDB.internal_coords.IC_Residue.no_altloc`) """ if maxPeptideBond is not None: mpbStash = IC_Chain.MaxPeptideBond IC_Chain.MaxPeptideBond = float(maxPeptideBond) # step one need IC_Residue atom_coords loaded in order to scale # so if no internal_coords, initialise from Atom coordinates added_IC_Atoms = False if "S" == entity.level or "M" == entity.level: for chn in entity.get_chains(): if not chn.internal_coord: chn.internal_coord = IC_Chain(chn) added_IC_Atoms = True elif "C" == entity.level: if not entity.internal_coord: # entity.internal_coord: entity.internal_coord = IC_Chain(entity) added_IC_Atoms = True else: raise PDBException("level not S, M or C: " + str(entity.level)) if added_IC_Atoms: # if loaded pdb, need to scale, and asm, gen atomArray entity.atom_to_internal_coordinates() else: # if loaded pic file and need to scale, generate atom coords entity.internal_to_atom_coordinates(None) if scale is not None: scaleMtx = homog_scale_mtx(scale) if "C" == entity.level: entity.internal_coord.atomArray = np.dot( entity.internal_coord.atomArray[:], scaleMtx ) entity.internal_coord.hAtoms_needs_update[:] = True entity.internal_coord.scale = scale else: for chn in entity.get_chains(): if hasattr(chn.internal_coord, "atomArray"): chn.internal_coord.atomArray = np.dot( chn.internal_coord.atomArray[:], scaleMtx ) chn.internal_coord.hAtoms_needs_update[:] = True chn.internal_coord.scale = scale # generate internal coords for scaled entity # (hedron bond lengths have changed if scaled) # if not scaling, still need to generate internal coordinate # bonds for ring sidechains # AllBonds is a class attribute for IC_Residue.atom_to_internal_coordinates # to generate explicit hedra covering all bonds allBondsStash = IC_Residue._AllBonds IC_Residue._AllBonds = True # trigger rebuild of hedra for AllBonds if "C" == entity.level: entity.internal_coord.ordered_aa_ic_list[0].hedra = {} delattr(entity.internal_coord, "hAtoms_needs_update") delattr(entity.internal_coord, "hedraLen") else: for chn in entity.get_chains(): chn.internal_coord.ordered_aa_ic_list[0].hedra = {} delattr(chn.internal_coord, "hAtoms_needs_update") delattr(chn.internal_coord, "hedraLen") entity.atom_to_internal_coordinates() IC_Residue._AllBonds = allBondsStash # rebuild atom coordinates now with chain starting at origin: in OpenSCAD # code, each residue model is transformed to N-Ca-C start position instead # of updating transform matrix along chain entity.internal_to_atom_coordinates() with as_handle(file, "w") as fp: if includeCode: fp.write(peptide_scad) if not pdbid and hasattr(entity, "header"): pdbid = entity.header.get("idcode", None) if pdbid is None or "" == pdbid: pdbid = "0PDB" fp.write( 'protein = [ "' + pdbid + '", ' + str(scale) + ", // ID, protein_scale\n" ) if "S" == entity.level or "M" == entity.level: for chn in entity.get_chains(): fp.write(" [\n") chn.internal_coord._write_SCAD( fp, backboneOnly=backboneOnly, start=start, fin=fin ) fp.write(" ]\n") elif "C" == entity.level: fp.write(" [\n") entity.internal_coord._write_SCAD( fp, backboneOnly=backboneOnly, start=start, fin=fin ) fp.write(" ]\n") elif "R" == entity.level: raise NotImplementedError("writescad single residue not yet implemented.") fp.write("\n];\n") if maxPeptideBond is not None: IC_Chain.MaxPeptideBond = mpbStash peptide_scad = """ /* // // peptide.scad // Copyright (c) 2019 Robert T. Miller. All rights reserved. // This file is part of the Biopython distribution and governed by your // choice of the "Biopython License Agreement" or the "BSD 3-Clause License". // Please see the LICENSE file that should have been included as part of this // package. // // This is the support file to build an OpenSCAD (http://www.openscad.org/) model // of a protein from internal coordinates. The resulting model may be constructed // on a 3D printer. // // data matrices should be appended below to form a program ready to load into // the OpenSCAD application. // // The protein_scale value used throughout is the second element of the // protein[] array appended below. // This is the value supplied when generating the data for build units per // PDB angstrom. // You may wish to modify it here to adjust the appearance of the model in // terms of atom sphere or bond cylinder diameter, however the bond lengths // are fixed with the supplied value when the data matrices are generated. // Atom sphere and bond cylinder radii may be individually adjusted below as // well. // // $fn (fragment number) is an OpenSCAD parameter controlling the smoothness // of the model surface. Smaller values will render faster, but yield more // 'blocky' models. // // This is intended to be a working example, you are encouraged to modify the // OpenSCAD subroutines below to generate a model to your liking. For more // information, start with http://www.openscad.org/cheatsheet/index.html // // Note especially the hedronDispatch() subroutine below: here you may select // hedra based on residue, sequence position, and class (hedron atoms) for // special handling. Also see the per hedron render options in the hedra[] // array. // // If you modify this file, you may find it useful to generate the data // matrices without this OpenSCAD code by calling write_SCAD() with the // includeCode=False option, then use the OpenSCAD 'include <>' facility at // the end of your modified OpenSCAD program. */ rotate([-90,0,0]) // convenient for default location (no N-Ca-C start coordinates) chain(protein); // this is the main subroutine call to build the structure // top-level OpenSCAD $fn for visible surfaces. Rotatable bonds use $fn=8 // inside, regardless of this setting. $fn = 0; // 0 yields OpenSCAD default of 30. $n=8 should print with minimal support tubes=false; // style: render atoms and bonds as constant diameter cylinders, preferred for rotatable bonds / h-bonds support=false; // enable print-in-place internal support for rotatable bonds // N.B. rotatable bonds must be parallel to build plate for internal support // structures to be generated correctly by slicer // output parameters atomScale=1.0; // 0.8 better for rotatable bonds defaultAtomRadius = 0.77; // used if tubes = true bondRadius = (tubes ? defaultAtomRadius * atomScale : 0.4); jBondRadius = defaultAtomRadius * atomScale; // radius for rotatable bonds // general printer, slicer, print settings layerHeight=0.15; // must match slicer setting for print-in-place support clearance=0.3; // sliding clearance - can be smaller (0.2) if not doing print-in-place pClearance=0.2; // press-fit clearance (magnets for h-bonds) shim=0.05; // extra to make OpenSCAD surfaces distinct in difference() nozzleDiameter=0.4; // need one magnet for each side of hydrogen bond, suggest 3mm x 5mm e.g. from eBay // use compass to identify poles if you care, North pointing (red) repels compass North pointing magR=3/2; // magnet radius magL=5; // magnet length // for $fn=8 which works nice on fdm printer oRot = 22.5; // 45/2, rotate to make fn=8 spheres and cylinders flat on build plate apmFac = cos(180/8); // apothem factor - multiply by radius for center to octagon side distance octSide = 2* tan(180/8); // multiply by radius to get length of octagon side // for values of $fn: fnRot = ($fn ? 90-(180/$fn) : 90-(180/30)); bondLenFac = 0.6; // fraction of bond length to extend from atom for each arm of hedron in join hblen = 1.97; // hydrogen bond length wall = 3*nozzleDiameter; joinerStep = 1; // radius difference between rotatable bond axle and end knob inside bond cylinder caTop = false; // only make top of N_C-alpha_C hedron plus C-beta (see hedron() and hedron_dispatch() examples) /* // // Generate a sphere to represent an atom. // Colour and size determined for the atom covalent radius specified by the // parameter 'a' by lookup in the atomData table below, then scaled by the // supplied parameter 'scal'. // // scal : protein_scale // clr : additional radius if used to create clearance for rotatable bonds // */ module atom(a,scal,clr=0) { ad = atomData[search([a],atomData)[0]]; color(ad[1]) { rotate([0,0,fnRot]) sphere(r=((ad[2]*atomScale)*scal)+clr); } } /* // // a hedron (below) may be 'reversed' in terms of the order of its two bonds; // this function fixes the ordering // */ function hFlip(h,rev) = // yes reversed : not reversed // 0 1 2 3 4 5 6 7 : 0 1 2 3 4 5 6 7 // len1 len3 atom1 atom3 a1 a2 a1-a2 a2-a3 len1 len3 atom1 atom3 a1 a3 a1-a2 a2-a3 (rev ? [ h[2], h[0], h[5], h[3], h[8], h[6], h[10], h[9] ] : [ h[0], h[2], h[3], h[5], h[6], h[8], h[9], h[10] ]); // h[1] = angle2 for both cases /* // // generate the male or female interior cylinders of a rotating bond // */ module joinUnit(cOuterLen, cOuterRad, cInnerLen, cInnerRad, male=false) { if (male) { rotate([0,0,oRot]) { cylinder(h=cInnerLen, r=cInnerRad, center=false, $fn=8); cylinder(h=cOuterLen, r=cOuterRad, center=false, $fn=8); } } else { rotate([0,0,fnRot]) { cylinder(h=cInnerLen, r=cInnerRad, center=false, $fn=30); cylinder(h=cOuterLen, r=cOuterRad, center=false, $fn=30); } } } /* // // create a rotatable bond // // supportSel : 0 for no support, 1 or 2 for support on top or bottom (needed // for reversed hedra) // */ module joiner(bondlen, scal, male=0, ver=0, supportSelect=0) { // ver = differentiate joiner part lengths to guide assembly, but not used lenfac = bondLenFac; jClr = clearance+0.05; cOuterRad = (jBondRadius * scal) - (2*wall + (male ? jClr/2 : -jClr/2)); cInnerRad = cOuterRad - joinerStep; // m/f jClr already in cOuterRad; - (male ? 0 : -0*jClr/2); hArmLen = (bondlen * lenfac); lenClr = 0.6*jClr; // length clearance applied to male and female both, so effective clearance is 2x this value cOuterLen = hArmLen * lenfac + (ver ? 0.5 : - 0.5) - (wall+ (male ? lenClr*2 : -lenClr*2 )); joinerOffset = (hArmLen * (1 - lenfac)) + (male ? lenClr : -lenClr) - (ver ? 1 : 0); i=supportSelect-1; oside = cOuterRad*octSide; wid = oside+2*wall+4*jClr+1; if (male) { rotate([0,180,0]) translate([0,0,-(bondlen-joinerOffset)]) { difference() { joinUnit(cOuterLen, cOuterRad, bondlen, cInnerRad, male=true); if (supportSelect) { rotate([0,0,i*180]) { translate([0,(cOuterRad*apmFac)-0.5*layerHeight,cOuterLen/2]) { cube([oside+2*shim,layerHeight+shim,cOuterLen+2*shim],center=true); } } } } if (supportSelect) { rotate([0,0,i*180]) { translate([0,(cOuterRad*apmFac)-0.5*layerHeight,cOuterLen/2]) { for (j=[0:1]) { rotate([0,(j?60:-60),0]) cube([wid,layerHeight,2*nozzleDiameter],center=true); } } } } } } else { translate([0,0,joinerOffset]) { joinUnit(cOuterLen, cOuterRad, bondlen, cInnerRad); if (supportSelect) { // extra gap top and bottom because filament sags supHeight = max(5*layerHeight,2*(cOuterRad-cOuterRad*apmFac)); // double because center=true below for(j=[0:1]) { rotate([0,0,j*180]) { translate([0,(cOuterRad*apmFac),cOuterLen/2]) { cube([oside+2*shim,supHeight+shim,cOuterLen+2*shim],center=true); } } } } } } } /* // // create bond with different options (regular, skinny, h-bond atom, rotatable // male or female // // parameters: // bl : bond length // br : bond radius // scal : protein_scale // key : option symbols defined below // atm : atomic element symbol, used for color and radius by atom() routine above // ver : make rotatable bonds slightly different based on value; currently unused // supporSel : enable print-in-place support for rotatable bonds // */ // option symbols - these names generated in BioPython code so avoid changing without thought StdBond = 1; FemaleJoinBond = 2; MaleJoinBond = 3; SkinnyBond = 4; // Calpha - Cbeta bond cylinder needs to be skinny for clearance with rotating bonds HBond = 5; // make room inside atom/bond to insert magnet to appropriate depth module bond(bl, br, scal, key, atm, ver, supportSel=0) { br = (key == FemaleJoinBond ? jBondRadius * scal : br) * (key == SkinnyBond ? 0.65 : 1); // bond radius smaller for skinnyBond bl = (key == FemaleJoinBond ? bl * bondLenFac : bl); // make female joiner shorter if (key == MaleJoinBond) { // male join is direct solid, others need difference() joiner(bl, scal, male = true, ver = ver, supportSelect=supportSel); } else { // regular bond / skinny / h-bond / female join bhblen = bl +(hblen/2 * scal); rotate([0,0,fnRot]) { difference() { union() { cylinder(h=bl,r=br,center=false); if (key == HBond) { // make extension collar for h-bond magnet rotate([0,0,oRot-fnRot]) cylinder(h=bhblen-1,r=(magR + clearance +wall),center=false, $fn=8); } } atom(atm,scal,-clearance); // remove overlap with atom to clear area for female join if (key == HBond) { // make space to insert magnet inside bond cylinder translate([0,0,(bhblen-magL)-pClearance]) cylinder(h=magL+pClearance+shim, r=magR+pClearance, center=false, $fn=8); } } } } } /* // // Generate a 'hedron', one plane of 3 points, consisting of 3 atoms joined by // two bonds. // Defined as bond length - bond angle - bond length // // In some cases the sequence of atoms in the h[] array is reversed (rev flag), // as detailed in the comments. // // other parameters: // // h = hedron array data according to rev flag: // yes reversed : not reversed // 0 1 2 3 4 5 6 7 : 0 1 2 3 4 5 6 7 // len1 len3 atom1 atom3 a1 a2 a1-a2 a2-a3 len1 len3 atom1 atom3 a1 a3 a1-a2 a2-a3 // // split: chop half of the hedron - to selectively print parts of a rotating // bond to be glued together. top or bottom half selected by global caTop // (C-alpha top) variable, undef by default so bottom half. // // supporSel: enable support structure inside rotatable bond to print in place. // Please note the bond needs to be exactly parallel to the buildplate and the // layerHeight global variable above needs to be set correctly for the // structure to be correctly created by your slicer software. // */ module hedron(h,rev=0,scal,split=0, supportSel) { newh = hFlip(h, rev); // make a consistent hedron array regardless of rev flag bondRad = bondRadius * scal; difference() { union(){ if (h[7]) { // central atom at 0,0,0 atom(h[4],scal); } if (newh[5] && newh[7] != FemaleJoinBond) { // not female join // comments for non-reversed case // atom 3 is len3 up on +z translate([0,0,newh[1]]) difference() { atom(newh[3],scal * (newh[7] == SkinnyBond ? 0.7 : 1)); // if skinny bond make atom (C-beta) same diameter as bond if (newh[7] == HBond) { // make room for hbond magnet through atom - this branch not used for backbone N,O translate([0,0,scal*hblen/2-magL-pClearance]) cylinder(h=magL+pClearance,r=magR+pClearance,$fn=8); } } } if (newh[7]) { // atom 2 - atom 3 bond from origin up +z distance len3 bond(newh[1], bondRad, scal, newh[7], h[4], ver=1, supportSel=supportSel); } rotate([0, h[1], 0]) { // rotate following elements by angle2 about Y if (newh[6]) { bond(newh[0], bondRad, scal, newh[6], h[4], ver=1, supportSel=supportSel); // h[4] is center atom (atom 2) } if (newh[4] && newh[6] != FemaleJoinBond) { // if draw atom 2 and atom1-atom2 not joiner translate([0,0,newh[0]]) { difference() { atom(newh[2],scal * (newh[6] == SkinnyBond ? 0.7 : 1)); // put atom1 sphere len1 away on Z if (newh[6] == HBond) { // make room for hbond magnet through atom translate([0,0,scal*hblen/2-magL-pClearance]) cylinder(h=magL+pClearance,r=magR+pClearance,$fn=8); } } } } } } if (split) { // top / bottom half cutter thick = 2*bondRadius * scal; Zdim = newh[0]; Xdim = newh[1]; cside = 7* defaultAtomRadius * atomScale * scal / 12 + (caTop ? pClearance : -pClearance); difference() { translate([-Xdim,((rev || caTop) ? 0 : -thick),-Zdim]) { cube([2*Xdim,thick,2*Zdim]); } if (!caTop) { rotate([0,(rev ? h[1] : 0),0]) rotate([45,0,0]) cube([cside, cside, cside],center=true); } } if (caTop) { //translate([tx+cside,0,tx+cside]) rotate([0,(rev ? h[1] : 0),0]) rotate([45,0,0]) cube([cside, cside, cside], center=true); } } if (newh[7] == FemaleJoinBond) { // female join joiner(newh[1], scal, male=false, ver=1, supportSelect=supportSel); } if (newh[6] == FemaleJoinBond) { // female join rotate([0, h[1], 0]) { // rotate following elements by angle2 about Y joiner(newh[0], scal, male=false, ver=1, supportSelect=supportSel); translate([0,0,newh[0]]) atom(newh[2],scal+0.5,clearance); // clearance for atom against join outer cylinder } } if (newh[7] == FemaleJoinBond || newh[6] == FemaleJoinBond) { // female join both hedron arms translate([0,0,newh[1]]) atom(newh[3],scal+0.5,clearance); // clearance for atom against join outer cylinder } } } /* // // Hook to call custom routines for specific hedra. // // Residue is h[h_residue] // Sequence position is h[h_seqpos] // */ module hedronDispatch(h,rev=0,scal) { // default action is just to pass to hedron() hedron(h, rev, scal, 0, (support ? 1 : 0)); /* // Some examples for special handling for specific hedra below: // note use of h_seqpos, h_residue, h_class for selecting hedra // bool flag caTop (for rotatable bond part) needs to be a global variable // so hedron() above can see it. caBase1 = false; // only make bottom of N_C-alpha_C hedron caBase2 = false; // same as caBase1 but for case of reversed hedron (for testing, should be identical to caBase1 result) amideOnly = false; // make only the first amide if (caTop) { // these examples select a specific sequence position (h[h_seqpos] == n) if (h[h_seqpos] == 1) { if (h[h_class] == "NCAC") { hedron(h, rev, scal, 1); } else if (h[h_class] == "CBCAC") { color("yellow") { // ca-cb hedron(h, rev, scal); } } } } else if (caBase1) { if (h[h_seqpos] == 1 && (h[h_class] == "NCAC")) { hedron(h, rev, scal, true, (support ? 1 : 0)); } } else if (caBase2) { if (h[h_seqpos] == 5 && (h[h_class] == "NCAC")) { hedron(h, rev, scal, true, (support ? 1 : 0)); } } else if (amideOnly) { if (h[h_seqpos] == 1) { if (h[h_class] == "CACN") { color("darkgray") { hedron(h, rev, scal); } } else if (h[h_class] == "CACO") { color("red") { // c=o hedron(h, rev, scal); } } else if (h[h_class] == "CNCA") { color("cyan") { // h=n hedron(h, rev, scal); } } } else if ((h[h_seqpos] == 2) && (h[h_class] == "HNCA")) { color("cyan") { // h=n hedron(h, rev, scal); } } // actions above select out only a single hedron } else { // actions below will process hedra all but handle selected ones differently if (h[h_class] == "NCAC") { if (h[h_seqpos] == 1) { if (! CCap && NCap) { // make split rotatable bond for terminal NH3 hedron(h, rev, scal, true, (support ? 1 : 0)); } } else if (h[h_seqpos] == 5) { // make split rotatable bond for terminal COOH hedron(h, rev, scal, true, (support ? 2 : 0)); // note supportSel = 2 } else { hedron(h, rev, scal, 0, (support ? 2 : 0)); } } else if (h[h_class] == "CBCAC") { color("yellow") { // ca-cb -- color yellow in OpenSCAD renderer if (h[h_seqpos] == 1 ) { // don't make here for N-term } else if (h[h_seqpos] == 5 ) { // don't make here for C-term } else { hedron(h, rev, scal); // otherwise do make here } } } else if (h[h_class] == "HNCA") { color("cyan") { // color h-n in OenSCAD renderer if (h[h_seqpos] == 1) { if (NCap) { // only make at N term if variable NCap is true hedron(h, rev, scal, 0, (support ? 1 : 0)); } } else { hedron(h, rev, scal, 0, (support ? 1 : 0)); } } } else if (h[h_residue] == "P") { color("darkgray") // highlight Prolines in OpenSCAD renderer hedron(h, rev, scal); } else { echo("unrecognised hedron", h[h_class]); color("pink") hedron(h, rev, scal, 0, (support ? 1 : 0)); } } */ } /* // // Generate a hedron rotated to specific angle d // */ module d2(d,hedra,scal) { tz = (d[d_reversed] ? hedra[d[d_h2ndx]][2] : hedra[d[d_h2ndx]][0]); // get h2 len1 depending on reversed rotate(d[d_dangle1]) { // 4. rotate h2 to specified dihedral angle translate([0,0,tz]) { // 3. translate h2 h2:len1 up +z rotate([180, 0, 0]) { // 2. rotate h2r about X so h2:a3 in +z and h2:a1 in -z hedronDispatch(hedra[d[d_h2ndx]],(!d[d_reversed]),scal); // 1. reverse hedron 2 orientation = h2r } } } } /* // // Generate two hedra at specified dihedral angle d // */ module dihedron(d,hedra,scal) { if (d[d_h1new]) hedronDispatch(hedra[d[d_h1ndx]],d[d_reversed],scal); // reverse h1 if dihedral reversed if (d[d_h2new]) d2(d,hedra,scal); } /* // // Generate a residue consisting of the set of dihedra in the parameter 'r', // referring to hedra the table specified in the parameter 'hedra'. // */ module residue(r,hedra, scal) { for (d = r) { multmatrix(d[d_dihedralTransform]) { dihedron(d, hedra, scal); } } } /* // // Generate a chain of residues, each positioned by a supplied // rotation/translation matrix. // */ module chain(protein) { chnD = protein[p_chainData]; c = chnD[c_residues]; dihedra = chnD[c_dihedra]; hedra = chnD[c_hedra]; for (r = c) { multmatrix(r[r_resTransform]) { residue(dihedra[r[r_resNdx]],hedra, protein[p_proteinScale]); } } } /* // // OpenSCAD array indices to reference protein data - tied to BioPython code // */ // protein base level p_pdbid = 0; p_proteinScale = 1; p_chainData = 2; // chain level data c_chainID = 0; c_dihedra = 1; c_hedra = 2; c_residues = 3; // hedra definitions h_len1 = 0; h_angle2 = 1; h_len3 = 2; h_atom1class = 3; h_atom2class = 4; h_atom3class = 5; h_atom1state = 6; h_atom2state = 7; h_atom3state = 8; h_bond1state = 9; h_bond2state = 10; h_residue = 11; h_seqpos = 12; // residue sequence position for first atom in hedra h_class = 13; // dihedra specifications for each residue in sequence, dihedral array d_dangle1 = 0; d_h1ndx = 1; d_h2ndx = 2; d_reversed = 3; d_h1new = 4; d_h2new = 5; d_dihedralTransform = 6; // residueSet: world transform for each residue in sequence array r_resNdx = 0; r_resID = 1; r_resTransform = 2; // use single default atom radius for all atoms if tubes = true, else use // covalent radii from literature atomData = ( tubes ? [ ["Csb","green" , defaultAtomRadius], ["Cres","green" , defaultAtomRadius], ["Cdb","green" , defaultAtomRadius], ["Osb","red" , defaultAtomRadius], ["Ores","red" , defaultAtomRadius], ["Odb","red" , defaultAtomRadius], ["Nsb","blue" , defaultAtomRadius], ["Nres","blue" , defaultAtomRadius], ["Ndb","blue" , defaultAtomRadius], ["Hsb","gray" , defaultAtomRadius], ["Ssb","yellow" , defaultAtomRadius] ] : // covalent radii from Heyrovska, Raji : 'Atomic Structures of all the Twenty // Essential Amino Acids and a Tripeptide, with Bond Lengths as Sums of Atomic // Covalent Radii' https://arxiv.org/pdf/0804.2488.pdf [ ["Csb","green" , 0.77], ["Cres","green" , 0.72], ["Cdb","green" , 0.67], ["Osb","red" , 0.67], ["Ores","red" , 0.635], ["Odb","red" , 0.60], ["Nsb","blue" , 0.70], ["Nres","blue" , 0.66], ["Ndb","blue" , 0.62], ["Hsb","gray" , 0.37], ["Ssb","yellow" , 1.04] ] ); // optionally include protein array data here [ write_SCAD(includeCode=False) ], e.g.: // include <1rtm.scad>; // or paste below """ # noqa