Fixed model loading for Bloom
Browse files
app.py
CHANGED
@@ -1,11 +1,11 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import AutoTokenizer,
|
3 |
from PyPDF2 import PdfReader
|
4 |
|
5 |
# Models and tokenizers setup
|
6 |
models = {
|
7 |
"Text Generator (Bloom)": {
|
8 |
-
"model":
|
9 |
"tokenizer": AutoTokenizer.from_pretrained("bigscience/bloom-560m"),
|
10 |
},
|
11 |
"PDF Summarizer (T5)": {
|
@@ -23,7 +23,7 @@ def generate_text(model_choice, input_text, max_tokens, temperature, top_p):
|
|
23 |
model_info = models[model_choice]
|
24 |
tokenizer = model_info["tokenizer"]
|
25 |
model = model_info["model"]
|
26 |
-
|
27 |
inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
28 |
outputs = model.generate(
|
29 |
**inputs, max_length=max_tokens, num_beams=5, early_stopping=True, temperature=temperature, top_p=top_p
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
from PyPDF2 import PdfReader
|
4 |
|
5 |
# Models and tokenizers setup
|
6 |
models = {
|
7 |
"Text Generator (Bloom)": {
|
8 |
+
"model": AutoModelForCausalLM.from_pretrained("bigscience/bloom-560m"),
|
9 |
"tokenizer": AutoTokenizer.from_pretrained("bigscience/bloom-560m"),
|
10 |
},
|
11 |
"PDF Summarizer (T5)": {
|
|
|
23 |
model_info = models[model_choice]
|
24 |
tokenizer = model_info["tokenizer"]
|
25 |
model = model_info["model"]
|
26 |
+
|
27 |
inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
28 |
outputs = model.generate(
|
29 |
**inputs, max_length=max_tokens, num_beams=5, early_stopping=True, temperature=temperature, top_p=top_p
|