Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -9,48 +9,43 @@ from sentence_transformers import SentenceTransformer
|
|
9 |
from transformers import pipeline
|
10 |
import re
|
11 |
|
12 |
-
# Setup logging
|
13 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
14 |
logger = logging.getLogger(__name__)
|
15 |
|
16 |
-
#
|
|
|
17 |
@st.cache_resource(ttl=1800)
|
18 |
def load_embeddings_model():
|
19 |
-
logger.info("Loading embeddings model")
|
20 |
try:
|
21 |
return SentenceTransformer("all-MiniLM-L12-v2")
|
22 |
except Exception as e:
|
23 |
-
logger.error(f"Embeddings load error: {str(e)}")
|
24 |
st.error(f"Embedding model error: {str(e)}")
|
25 |
return None
|
26 |
|
27 |
@st.cache_resource(ttl=1800)
|
28 |
def load_qa_pipeline():
|
29 |
-
logger.info("Loading QA pipeline")
|
30 |
try:
|
31 |
return pipeline("text2text-generation", model="google/flan-t5-small", max_length=300)
|
32 |
except Exception as e:
|
33 |
-
logger.error(f"QA model load error: {str(e)}")
|
34 |
st.error(f"QA model error: {str(e)}")
|
35 |
return None
|
36 |
|
37 |
@st.cache_resource(ttl=1800)
|
38 |
def load_summary_pipeline():
|
39 |
-
logger.info("Loading summary pipeline")
|
40 |
try:
|
41 |
return pipeline("summarization", model="sshleifer/distilbart-cnn-6-6", max_length=150)
|
42 |
except Exception as e:
|
43 |
-
logger.error(f"Summary model load error: {str(e)}")
|
44 |
st.error(f"Summary model error: {str(e)}")
|
45 |
return None
|
46 |
|
47 |
-
#
|
|
|
48 |
def process_pdf(uploaded_file):
|
49 |
-
|
|
|
50 |
try:
|
51 |
-
|
52 |
-
code_blocks = []
|
53 |
-
with pdfplumber.open(BytesIO(uploaded_file.getvalue())) as pdf:
|
54 |
for page in pdf.pages[:20]:
|
55 |
extracted = page.extract_text(layout=False)
|
56 |
if extracted:
|
@@ -58,23 +53,16 @@ def process_pdf(uploaded_file):
|
|
58 |
for char in page.chars:
|
59 |
if 'fontname' in char and 'mono' in char['fontname'].lower():
|
60 |
code_blocks.append(char['text'])
|
61 |
-
code_text_page = page.extract_text()
|
62 |
-
code_matches = re.finditer(r'(^\s{2,}.*?(?:\n\s{2,}.*?)*)', code_text_page
|
63 |
for match in code_matches:
|
64 |
code_blocks.append(match.group().strip())
|
65 |
tables = page.extract_tables()
|
66 |
if tables:
|
67 |
for table in tables:
|
68 |
text += "\n".join([" | ".join(map(str, row)) for row in table if row]) + "\n"
|
69 |
-
for obj in page.extract_words():
|
70 |
-
if obj.get('size', 0) > 12:
|
71 |
-
text += f"\n{obj['text']}\n"
|
72 |
-
|
73 |
code_text = "\n".join(code_blocks).strip()
|
74 |
-
if not text:
|
75 |
-
raise ValueError("No text extracted from PDF")
|
76 |
|
77 |
-
# Use RecursiveCharacterTextSplitter for better semantic splitting
|
78 |
text_splitter = RecursiveCharacterTextSplitter(
|
79 |
chunk_size=500, chunk_overlap=100, separators=["\n\n", "\n", ".", " "]
|
80 |
)
|
@@ -85,160 +73,228 @@ def process_pdf(uploaded_file):
|
|
85 |
if not embeddings_model:
|
86 |
return None, None, text, code_text
|
87 |
|
88 |
-
# Build FAISS vector stores efficiently
|
89 |
text_vectors = [embeddings_model.encode(chunk) for chunk in text_chunks]
|
90 |
code_vectors = [embeddings_model.encode(chunk) for chunk in code_chunks]
|
91 |
|
92 |
text_vector_store = FAISS.from_embeddings(zip(text_chunks, text_vectors), embeddings_model.encode) if text_chunks else None
|
93 |
code_vector_store = FAISS.from_embeddings(zip(code_chunks, code_vectors), embeddings_model.encode) if code_chunks else None
|
94 |
|
95 |
-
logger.info("PDF processed successfully with enhanced extraction")
|
96 |
return text_vector_store, code_vector_store, text, code_text
|
|
|
97 |
except Exception as e:
|
98 |
-
logger.error(f"PDF processing error: {str(e)}")
|
99 |
st.error(f"PDF error: {str(e)}")
|
100 |
return None, None, "", ""
|
101 |
|
102 |
-
#
|
103 |
-
def summarize_pdf(text):
|
104 |
-
logger.info("Generating summary")
|
105 |
-
try:
|
106 |
-
summary_pipeline = load_summary_pipeline()
|
107 |
-
if not summary_pipeline:
|
108 |
-
return "Summary model unavailable."
|
109 |
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
for chunk in chunks:
|
117 |
-
summary = summary_pipeline(chunk[:500], max_length=100, min_length=30, do_sample=False)[0]['summary_text']
|
118 |
-
summaries.append(summary.strip())
|
119 |
-
|
120 |
-
combined_summary = " ".join(summaries)
|
121 |
-
if len(combined_summary.split()) > 150:
|
122 |
-
combined_summary = " ".join(combined_summary.split()[:150])
|
123 |
-
logger.info("Summary generated")
|
124 |
-
return f"Sure, here's a concise summary of the PDF:\n{combined_summary}"
|
125 |
-
except Exception as e:
|
126 |
-
logger.error(f"Summary error: {str(e)}")
|
127 |
-
return f"Oops, something went wrong summarizing: {str(e)}"
|
128 |
|
129 |
-
|
130 |
-
|
131 |
-
logger.info(f"Processing query: {query}")
|
132 |
-
try:
|
133 |
-
if not text_vector_store and not code_vector_store:
|
134 |
-
return "Please upload a PDF first!"
|
135 |
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
218 |
if st.session_state.text_vector_store or st.session_state.code_vector_store:
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
st.session_state.
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
st.
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
from transformers import pipeline
|
10 |
import re
|
11 |
|
12 |
+
# Setup logging
|
13 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
14 |
logger = logging.getLogger(__name__)
|
15 |
|
16 |
+
# ----------- Load Models -----------
|
17 |
+
|
18 |
@st.cache_resource(ttl=1800)
|
19 |
def load_embeddings_model():
|
|
|
20 |
try:
|
21 |
return SentenceTransformer("all-MiniLM-L12-v2")
|
22 |
except Exception as e:
|
|
|
23 |
st.error(f"Embedding model error: {str(e)}")
|
24 |
return None
|
25 |
|
26 |
@st.cache_resource(ttl=1800)
|
27 |
def load_qa_pipeline():
|
|
|
28 |
try:
|
29 |
return pipeline("text2text-generation", model="google/flan-t5-small", max_length=300)
|
30 |
except Exception as e:
|
|
|
31 |
st.error(f"QA model error: {str(e)}")
|
32 |
return None
|
33 |
|
34 |
@st.cache_resource(ttl=1800)
|
35 |
def load_summary_pipeline():
|
|
|
36 |
try:
|
37 |
return pipeline("summarization", model="sshleifer/distilbart-cnn-6-6", max_length=150)
|
38 |
except Exception as e:
|
|
|
39 |
st.error(f"Summary model error: {str(e)}")
|
40 |
return None
|
41 |
|
42 |
+
# ----------- PDF Processing -----------
|
43 |
+
|
44 |
def process_pdf(uploaded_file):
|
45 |
+
text = ""
|
46 |
+
code_blocks = []
|
47 |
try:
|
48 |
+
with pdfplumber.open(BytesIO(uploaded_file.read())) as pdf:
|
|
|
|
|
49 |
for page in pdf.pages[:20]:
|
50 |
extracted = page.extract_text(layout=False)
|
51 |
if extracted:
|
|
|
53 |
for char in page.chars:
|
54 |
if 'fontname' in char and 'mono' in char['fontname'].lower():
|
55 |
code_blocks.append(char['text'])
|
56 |
+
code_text_page = page.extract_text() or ""
|
57 |
+
code_matches = re.finditer(r'(^\s{2,}.*?(?:\n\s{2,}.*?)*)', code_text_page, re.MULTILINE)
|
58 |
for match in code_matches:
|
59 |
code_blocks.append(match.group().strip())
|
60 |
tables = page.extract_tables()
|
61 |
if tables:
|
62 |
for table in tables:
|
63 |
text += "\n".join([" | ".join(map(str, row)) for row in table if row]) + "\n"
|
|
|
|
|
|
|
|
|
64 |
code_text = "\n".join(code_blocks).strip()
|
|
|
|
|
65 |
|
|
|
66 |
text_splitter = RecursiveCharacterTextSplitter(
|
67 |
chunk_size=500, chunk_overlap=100, separators=["\n\n", "\n", ".", " "]
|
68 |
)
|
|
|
73 |
if not embeddings_model:
|
74 |
return None, None, text, code_text
|
75 |
|
|
|
76 |
text_vectors = [embeddings_model.encode(chunk) for chunk in text_chunks]
|
77 |
code_vectors = [embeddings_model.encode(chunk) for chunk in code_chunks]
|
78 |
|
79 |
text_vector_store = FAISS.from_embeddings(zip(text_chunks, text_vectors), embeddings_model.encode) if text_chunks else None
|
80 |
code_vector_store = FAISS.from_embeddings(zip(code_chunks, code_vectors), embeddings_model.encode) if code_chunks else None
|
81 |
|
|
|
82 |
return text_vector_store, code_vector_store, text, code_text
|
83 |
+
|
84 |
except Exception as e:
|
|
|
85 |
st.error(f"PDF error: {str(e)}")
|
86 |
return None, None, "", ""
|
87 |
|
88 |
+
# ----------- Preload Dataset -----------
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
+
def preload_dataset():
|
91 |
+
dataset_path = "data"
|
92 |
+
combined_text = ""
|
93 |
+
combined_code = ""
|
94 |
+
text_vector_store = None
|
95 |
+
code_vector_store = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
+
if not os.path.exists(dataset_path):
|
98 |
+
return text_vector_store, code_vector_store, combined_text, combined_code
|
|
|
|
|
|
|
|
|
99 |
|
100 |
+
embeddings_model = load_embeddings_model()
|
101 |
+
if not embeddings_model:
|
102 |
+
return text_vector_store, code_vector_store, combined_text, combined_code
|
103 |
+
|
104 |
+
all_text_chunks = []
|
105 |
+
all_text_vectors = []
|
106 |
+
all_code_chunks = []
|
107 |
+
all_code_vectors = []
|
108 |
+
|
109 |
+
for file_name in os.listdir(dataset_path):
|
110 |
+
file_path = os.path.join(dataset_path, file_name)
|
111 |
+
if file_name.lower().endswith(".pdf"):
|
112 |
+
with open(file_path, "rb") as f:
|
113 |
+
t_store, c_store, t_text, c_text = process_pdf(f)
|
114 |
+
combined_text += t_text + "\n"
|
115 |
+
combined_code += c_text + "\n"
|
116 |
+
if t_store:
|
117 |
+
for chunk in t_store.index_to_docstore().values():
|
118 |
+
all_text_chunks.append(chunk)
|
119 |
+
all_text_vectors.append(embeddings_model.encode(chunk))
|
120 |
+
if c_store:
|
121 |
+
for chunk in c_store.index_to_docstore().values():
|
122 |
+
all_code_chunks.append(chunk)
|
123 |
+
all_code_vectors.append(embeddings_model.encode(chunk))
|
124 |
+
elif file_name.lower().endswith(".txt"):
|
125 |
+
with open(file_path, "r", encoding="utf-8") as f:
|
126 |
+
text_content = f.read()
|
127 |
+
combined_text += text_content + "\n"
|
128 |
+
chunks = text_content.split("\n\n")
|
129 |
+
for chunk in chunks:
|
130 |
+
all_text_chunks.append(chunk)
|
131 |
+
all_text_vectors.append(embeddings_model.encode(chunk))
|
132 |
+
|
133 |
+
if all_text_chunks:
|
134 |
+
text_vector_store = FAISS.from_embeddings(zip(all_text_chunks, all_text_vectors), embeddings_model.encode)
|
135 |
+
if all_code_chunks:
|
136 |
+
code_vector_store = FAISS.from_embeddings(zip(all_code_chunks, all_code_vectors), embeddings_model.encode)
|
137 |
+
|
138 |
+
return text_vector_store, code_vector_store, combined_text, combined_code
|
139 |
+
|
140 |
+
# ----------- Streamlit UI -----------
|
141 |
+
|
142 |
+
st.set_page_config(page_title="Smart PDF Q&A", page_icon="📄", layout="wide")
|
143 |
+
|
144 |
+
# Fixed CSS for chat colors
|
145 |
+
st.markdown("""
|
146 |
+
<style>
|
147 |
+
/* Chat container */
|
148 |
+
.chat-container {
|
149 |
+
border: 1px solid #ddd;
|
150 |
+
border-radius: 10px;
|
151 |
+
padding: 10px;
|
152 |
+
height: 60vh;
|
153 |
+
overflow-y: auto;
|
154 |
+
margin-top: 20px;
|
155 |
+
}
|
156 |
+
|
157 |
+
/* Chat bubbles */
|
158 |
+
.stChatMessage {
|
159 |
+
border-radius: 15px;
|
160 |
+
padding: 10px;
|
161 |
+
margin: 5px;
|
162 |
+
max-width: 70%;
|
163 |
+
word-wrap: break-word;
|
164 |
+
}
|
165 |
+
|
166 |
+
/* User message */
|
167 |
+
.user {
|
168 |
+
background-color: #e6f3ff !important;
|
169 |
+
color: #000 !important;
|
170 |
+
align-self: flex-end;
|
171 |
+
text-align: right;
|
172 |
+
}
|
173 |
+
|
174 |
+
/* Assistant message */
|
175 |
+
.assistant {
|
176 |
+
background-color: #f0f0f0 !important;
|
177 |
+
color: #000 !important;
|
178 |
+
text-align: left;
|
179 |
+
}
|
180 |
+
|
181 |
+
/* Dark mode support */
|
182 |
+
body[data-theme="dark"] .user {
|
183 |
+
background-color: #2a2a72 !important;
|
184 |
+
color: #fff !important;
|
185 |
+
}
|
186 |
+
body[data-theme="dark"] .assistant {
|
187 |
+
background-color: #2e2e2e !important;
|
188 |
+
color: #fff !important;
|
189 |
+
}
|
190 |
+
|
191 |
+
/* Buttons */
|
192 |
+
.stButton>button {
|
193 |
+
background-color: #4CAF50;
|
194 |
+
color: white;
|
195 |
+
border: none;
|
196 |
+
padding: 8px 16px;
|
197 |
+
border-radius: 5px;
|
198 |
+
}
|
199 |
+
.stButton>button:hover {
|
200 |
+
background-color: #45a049;
|
201 |
+
}
|
202 |
+
|
203 |
+
/* Preformatted code */
|
204 |
+
pre {
|
205 |
+
background-color: #f8f8f8;
|
206 |
+
padding: 10px;
|
207 |
+
border-radius: 5px;
|
208 |
+
overflow-x: auto;
|
209 |
+
}
|
210 |
+
|
211 |
+
/* Header */
|
212 |
+
.header {
|
213 |
+
background: linear-gradient(90deg, #4CAF50, #81C784);
|
214 |
+
color: white;
|
215 |
+
padding: 10px;
|
216 |
+
border-radius: 5px;
|
217 |
+
text-align: center;
|
218 |
+
}
|
219 |
+
</style>
|
220 |
+
""", unsafe_allow_html=True)
|
221 |
+
|
222 |
+
st.markdown('<div class="header"><h1>Smart PDF Q&A</h1></div>', unsafe_allow_html=True)
|
223 |
+
st.markdown("Upload a PDF to ask questions, summarize (~150 words), or extract code with 'give me code'.")
|
224 |
+
|
225 |
+
# Session state
|
226 |
+
if "messages" not in st.session_state:
|
227 |
+
st.session_state.messages = []
|
228 |
+
if "text_vector_store" not in st.session_state:
|
229 |
+
st.session_state.text_vector_store = None
|
230 |
+
if "code_vector_store" not in st.session_state:
|
231 |
+
st.session_state.code_vector_store = None
|
232 |
+
if "pdf_text" not in st.session_state:
|
233 |
+
st.session_state.pdf_text = ""
|
234 |
+
if "code_text" not in st.session_state:
|
235 |
+
st.session_state.code_text = ""
|
236 |
+
|
237 |
+
# Preload dataset at start
|
238 |
+
if st.session_state.text_vector_store is None and st.session_state.code_vector_store is None:
|
239 |
+
st.session_state.text_vector_store, st.session_state.code_vector_store, st.session_state.pdf_text, st.session_state.code_text = preload_dataset()
|
240 |
if st.session_state.text_vector_store or st.session_state.code_vector_store:
|
241 |
+
st.info("Preloaded sample dataset loaded for better QA and code retrieval.")
|
242 |
+
|
243 |
+
# PDF upload & buttons
|
244 |
+
uploaded_file = st.file_uploader("Upload a PDF", type=["pdf"])
|
245 |
+
col1, col2 = st.columns([1,1])
|
246 |
+
with col1:
|
247 |
+
if st.button("Process PDF") and uploaded_file:
|
248 |
+
with st.spinner("Processing PDF..."):
|
249 |
+
st.session_state.text_vector_store, st.session_state.code_vector_store, st.session_state.pdf_text, st.session_state.code_text = process_pdf(uploaded_file)
|
250 |
+
if st.session_state.text_vector_store or st.session_state.code_vector_store:
|
251 |
+
st.success("PDF processed! Ask away or summarize.")
|
252 |
+
st.session_state.messages = []
|
253 |
+
else:
|
254 |
+
st.error("Failed to process PDF.")
|
255 |
+
|
256 |
+
with col2:
|
257 |
+
if st.button("Summarize PDF") and st.session_state.pdf_text:
|
258 |
+
with st.spinner("Summarizing..."):
|
259 |
+
summary_pipeline = load_summary_pipeline()
|
260 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50, separators=["\n\n", "\n", ".", " "])
|
261 |
+
chunks = text_splitter.split_text(st.session_state.pdf_text)[:2]
|
262 |
+
summaries = []
|
263 |
+
for chunk in chunks:
|
264 |
+
summary = summary_pipeline(chunk[:500], max_length=100, min_length=30, do_sample=False)[0]['summary_text']
|
265 |
+
summaries.append(summary.strip())
|
266 |
+
combined_summary = " ".join(summaries)
|
267 |
+
st.session_state.messages.append({"role":"assistant","content":combined_summary})
|
268 |
+
st.markdown(combined_summary)
|
269 |
+
|
270 |
+
# Chat interface
|
271 |
+
st.markdown('<div class="chat-container">', unsafe_allow_html=True)
|
272 |
+
prompt = st.chat_input("Ask a question (e.g., 'Give me code' or 'What’s the main idea?'):")
|
273 |
+
if prompt:
|
274 |
+
st.session_state.messages.append({"role":"user","content":prompt})
|
275 |
+
with st.chat_message("user"):
|
276 |
+
st.markdown(f"<div class='user'>{prompt}</div>", unsafe_allow_html=True)
|
277 |
+
with st.chat_message("assistant"):
|
278 |
+
qa_pipeline = load_qa_pipeline()
|
279 |
+
is_code_query = any(k in prompt.lower() for k in ["code","script","function","programming","give me code","show code"])
|
280 |
+
if is_code_query and st.session_state.code_vector_store:
|
281 |
+
answer = f"Here's the code from the PDF:\n```python\n{st.session_state.code_text}\n```"
|
282 |
+
elif st.session_state.text_vector_store:
|
283 |
+
docs = st.session_state.text_vector_store.similarity_search(prompt, k=5)
|
284 |
+
context = "\n".join(doc.page_content for doc in docs)
|
285 |
+
answer = qa_pipeline(f"Context: {context}\nQuestion: {prompt}\nProvide a detailed answer.")[0]['generated_text']
|
286 |
+
else:
|
287 |
+
answer = "Please upload a PDF first!"
|
288 |
+
st.markdown(f"<div class='assistant'>{answer}</div>", unsafe_allow_html=True)
|
289 |
+
st.session_state.messages.append({"role":"assistant","content":answer})
|
290 |
+
|
291 |
+
# Display chat history
|
292 |
+
for msg in st.session_state.messages:
|
293 |
+
cls = "user" if msg["role"]=="user" else "assistant"
|
294 |
+
st.markdown(f"<div class='{cls}' style='margin:5px;padding:10px;border-radius:15px;'>{msg['content']}</div>", unsafe_allow_html=True)
|
295 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
296 |
+
|
297 |
+
# Download chat
|
298 |
+
if st.session_state.messages:
|
299 |
+
chat_text = "\n".join(f"{m['role'].capitalize()}: {m['content']}" for m in st.session_state.messages)
|
300 |
+
st.download_button("Download Chat History", chat_text, "chat_history.txt")
|