Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,81 +1,102 @@
|
|
1 |
import streamlit as st
|
2 |
-
import os
|
3 |
import logging
|
|
|
4 |
from io import BytesIO
|
5 |
from PyPDF2 import PdfReader
|
6 |
from langchain.text_splitter import CharacterTextSplitter
|
7 |
-
from langchain_community.embeddings import HuggingFaceEmbeddings
|
8 |
from langchain_community.vectorstores import FAISS
|
9 |
-
from
|
10 |
-
from
|
11 |
-
from langchain_community.llms import HuggingFaceHub
|
12 |
-
from transformers import pipeline # For fallback if Hub fails
|
13 |
|
14 |
-
#
|
15 |
-
logging.basicConfig(level=logging.INFO)
|
16 |
logger = logging.getLogger(__name__)
|
17 |
|
18 |
-
#
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
if not text:
|
36 |
-
raise ValueError("No text extracted from PDF
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={'device': 'cpu'})
|
44 |
-
|
45 |
-
# Vector store
|
46 |
-
vector_store = FAISS.from_texts(chunks, embedding=embeddings)
|
47 |
-
logger.info("PDF processed successfully")
|
48 |
-
return vector_store
|
49 |
-
except Exception as e:
|
50 |
-
logger.error(f"PDF processing error: {str(e)}")
|
51 |
-
st.error(f"Error processing PDF: {str(e)}")
|
52 |
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
return "Unable to generate answer."
|
75 |
|
76 |
-
|
|
|
|
|
77 |
st.title("Smart PDF Q&A")
|
78 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
# Initialize session state
|
81 |
if "messages" not in st.session_state:
|
@@ -83,37 +104,40 @@ try:
|
|
83 |
if "vector_store" not in st.session_state:
|
84 |
st.session_state.vector_store = None
|
85 |
|
86 |
-
# PDF upload
|
87 |
-
uploaded_file = st.file_uploader("Upload PDF", type="pdf")
|
88 |
-
if uploaded_file:
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
# Display chat history
|
98 |
-
for message in st.session_state.messages:
|
99 |
-
with st.chat_message(message["role"]):
|
100 |
-
st.markdown(message["content"])
|
101 |
|
102 |
-
#
|
103 |
if st.session_state.vector_store:
|
104 |
-
|
105 |
-
|
106 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
107 |
with st.chat_message("user"):
|
108 |
st.markdown(prompt)
|
109 |
-
|
110 |
-
# Generate answer
|
111 |
with st.chat_message("assistant"):
|
112 |
-
with st.spinner("
|
113 |
answer = answer_question(st.session_state.vector_store, prompt)
|
114 |
st.markdown(answer)
|
115 |
st.session_state.messages.append({"role": "assistant", "content": answer})
|
116 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
except Exception as e:
|
118 |
logger.error(f"App initialization failed: {str(e)}")
|
119 |
-
st.error(f"
|
|
|
1 |
import streamlit as st
|
|
|
2 |
import logging
|
3 |
+
import os
|
4 |
from io import BytesIO
|
5 |
from PyPDF2 import PdfReader
|
6 |
from langchain.text_splitter import CharacterTextSplitter
|
|
|
7 |
from langchain_community.vectorstores import FAISS
|
8 |
+
from sentence_transformers import SentenceTransformer
|
9 |
+
from transformers import pipeline
|
|
|
|
|
10 |
|
11 |
+
# Setup logging for Spaces
|
12 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
13 |
logger = logging.getLogger(__name__)
|
14 |
|
15 |
+
# Lazy load models
|
16 |
+
@st.cache_resource(ttl=3600)
|
17 |
+
def load_embeddings_model():
|
18 |
+
logger.info("Loading embeddings model")
|
19 |
+
try:
|
20 |
+
return SentenceTransformer("all-MiniLM-L6-v2")
|
21 |
+
except Exception as e:
|
22 |
+
logger.error(f"Embeddings load error: {str(e)}")
|
23 |
+
st.error(f"Embedding model error: {str(e)}")
|
24 |
+
return None
|
25 |
|
26 |
+
@st.cache_resource(ttl=3600)
|
27 |
+
def load_qa_pipeline():
|
28 |
+
logger.info("Loading QA pipeline")
|
29 |
+
try:
|
30 |
+
return pipeline("text2text-generation", model="google/flan-t5-small", max_length=200)
|
31 |
+
except Exception as e:
|
32 |
+
logger.error(f"QA model load error: {str(e)}")
|
33 |
+
st.error(f"QA model error: {str(e)}")
|
34 |
+
return None
|
35 |
+
|
36 |
+
# Process PDF
|
37 |
+
def process_pdf(uploaded_file):
|
38 |
+
logger.info("Processing PDF")
|
39 |
+
try:
|
40 |
+
pdf_reader = PdfReader(BytesIO(uploaded_file.getvalue()))
|
41 |
+
text = "".join(page.extract_text() or "" for page in pdf_reader.pages)
|
42 |
+
if not text:
|
43 |
+
# Optional OCR (uncomment if needed, requires pdf2image, pytesseract)
|
44 |
+
# from pdf2image import convert_from_bytes
|
45 |
+
# import pytesseract
|
46 |
+
# images = convert_from_bytes(uploaded_file.getvalue())
|
47 |
+
# text = "".join(pytesseract.image_to_string(img) for img in images)
|
48 |
if not text:
|
49 |
+
raise ValueError("No text extracted from PDF")
|
50 |
+
|
51 |
+
text_splitter = CharacterTextSplitter(separator="\n", chunk_size=600, chunk_overlap=150)
|
52 |
+
chunks = text_splitter.split_text(text)
|
53 |
+
|
54 |
+
embeddings_model = load_embeddings_model()
|
55 |
+
if not embeddings_model:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
return None
|
57 |
+
|
58 |
+
embeddings = [embeddings_model.encode(chunk) for chunk in chunks]
|
59 |
+
vector_store = FAISS.from_embeddings(zip(chunks, embeddings), embeddings_model.encode)
|
60 |
+
logger.info("PDF processed successfully")
|
61 |
+
return vector_store
|
62 |
+
except Exception as e:
|
63 |
+
logger.error(f"PDF processing error: {str(e)}")
|
64 |
+
st.error(f"PDF error: {str(e)}")
|
65 |
+
return None
|
66 |
|
67 |
+
# Answer question
|
68 |
+
def answer_question(vector_store, query):
|
69 |
+
logger.info(f"Processing query: {query}")
|
70 |
+
try:
|
71 |
+
if not vector_store:
|
72 |
+
return "Please upload a PDF first."
|
73 |
+
|
74 |
+
qa_pipeline = load_qa_pipeline()
|
75 |
+
if not qa_pipeline:
|
76 |
+
return "QA model unavailable."
|
77 |
+
|
78 |
+
docs = vector_store.similarity_search(query, k=3)
|
79 |
+
context = "\n".join(doc.page_content for doc in docs)
|
80 |
+
prompt = f"Context: {context}\nQuestion: {query}\nAnswer concisely:"
|
81 |
+
response = qa_pipeline(prompt)[0]['generated_text']
|
82 |
+
logger.info("Answer generated")
|
83 |
+
return response.strip()
|
84 |
+
except Exception as e:
|
85 |
+
logger.error(f"Query error: {str(e)}")
|
86 |
+
return f"Error answering: {str(e)}"
|
|
|
87 |
|
88 |
+
# Streamlit UI
|
89 |
+
try:
|
90 |
+
st.set_page_config(page_title="Smart PDF Q&A", page_icon="📄")
|
91 |
st.title("Smart PDF Q&A")
|
92 |
+
st.markdown("""
|
93 |
+
Upload a PDF and ask questions about its content. Chat history is preserved.
|
94 |
+
<style>
|
95 |
+
.stChatMessage { border-radius: 10px; padding: 10px; margin: 5px; }
|
96 |
+
.stChatMessage.user { background-color: #e6f3ff; }
|
97 |
+
.stChatMessage.assistant { background-color: #f0f0f0; }
|
98 |
+
</style>
|
99 |
+
""", unsafe_allow_html=True)
|
100 |
|
101 |
# Initialize session state
|
102 |
if "messages" not in st.session_state:
|
|
|
104 |
if "vector_store" not in st.session_state:
|
105 |
st.session_state.vector_store = None
|
106 |
|
107 |
+
# PDF upload
|
108 |
+
uploaded_file = st.file_uploader("Upload a PDF", type=["pdf"])
|
109 |
+
if uploaded_file and st.button("Process PDF"):
|
110 |
+
with st.spinner("Processing PDF..."):
|
111 |
+
st.session_state.vector_store = process_pdf(uploaded_file)
|
112 |
+
if st.session_state.vector_store:
|
113 |
+
st.success("PDF processed! Ask questions below.")
|
114 |
+
st.session_state.messages = []
|
115 |
+
else:
|
116 |
+
st.error("Failed to process PDF.")
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
+
# Chat interface
|
119 |
if st.session_state.vector_store:
|
120 |
+
prompt = st.chat_input("Ask a question about the PDF:")
|
121 |
+
if prompt:
|
122 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
123 |
with st.chat_message("user"):
|
124 |
st.markdown(prompt)
|
|
|
|
|
125 |
with st.chat_message("assistant"):
|
126 |
+
with st.spinner("Generating answer..."):
|
127 |
answer = answer_question(st.session_state.vector_store, prompt)
|
128 |
st.markdown(answer)
|
129 |
st.session_state.messages.append({"role": "assistant", "content": answer})
|
130 |
|
131 |
+
# Display chat history
|
132 |
+
for message in st.session_state.messages:
|
133 |
+
with st.chat_message(message["role"]):
|
134 |
+
st.markdown(message["content"])
|
135 |
+
|
136 |
+
# Download chat history
|
137 |
+
if st.session_state.messages:
|
138 |
+
chat_text = "\n".join(f"{m['role'].capitalize()}: {m['content']}" for m in st.session_state.messages)
|
139 |
+
st.download_button("Download Chat History", chat_text, "chat_history.txt")
|
140 |
+
|
141 |
except Exception as e:
|
142 |
logger.error(f"App initialization failed: {str(e)}")
|
143 |
+
st.error(f"App failed to start: {str(e)}. Check Spaces logs or contact support.")
|