Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import os
|
3 |
+
import logging
|
4 |
+
from io import BytesIO
|
5 |
+
from PyPDF2 import PdfReader
|
6 |
+
from langchain.text_splitter import CharacterTextSplitter
|
7 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
8 |
+
from langchain_community.vectorstores import FAISS
|
9 |
+
from langchain.prompts import PromptTemplate
|
10 |
+
from langchain.chains.question_answering import load_qa_chain
|
11 |
+
from langchain_community.llms import HuggingFaceHub
|
12 |
+
from transformers import pipeline # For fallback if Hub fails
|
13 |
+
|
14 |
+
# Set up logging
|
15 |
+
logging.basicConfig(level=logging.INFO)
|
16 |
+
logger = logging.getLogger(__name__)
|
17 |
+
|
18 |
+
# Check API token
|
19 |
+
if "HUGGINGFACEHUB_API_TOKEN" not in os.environ:
|
20 |
+
st.error("HUGGINGFACEHUB_API_TOKEN not set in secrets. Add it in Space settings.")
|
21 |
+
st.stop()
|
22 |
+
|
23 |
+
try:
|
24 |
+
# Function to process PDF
|
25 |
+
def process_pdf(uploaded_file):
|
26 |
+
try:
|
27 |
+
logger.info("Starting PDF processing")
|
28 |
+
pdf_reader = PdfReader(BytesIO(uploaded_file.getvalue()))
|
29 |
+
text = ""
|
30 |
+
for page in pdf_reader.pages:
|
31 |
+
extracted = page.extract_text()
|
32 |
+
if extracted:
|
33 |
+
text += extracted + "\n"
|
34 |
+
|
35 |
+
if not text:
|
36 |
+
raise ValueError("No text extracted from PDF.")
|
37 |
+
|
38 |
+
# Chunk text (increased overlap for better context)
|
39 |
+
text_splitter = CharacterTextSplitter(separator="\n", chunk_size=800, chunk_overlap=200, length_function=len)
|
40 |
+
chunks = text_splitter.split_text(text)
|
41 |
+
|
42 |
+
# Embeddings (light model)
|
43 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={'device': 'cpu'})
|
44 |
+
|
45 |
+
# Vector store
|
46 |
+
vector_store = FAISS.from_texts(chunks, embedding=embeddings)
|
47 |
+
logger.info("PDF processed successfully")
|
48 |
+
return vector_store
|
49 |
+
except Exception as e:
|
50 |
+
logger.error(f"PDF processing error: {str(e)}")
|
51 |
+
st.error(f"Error processing PDF: {str(e)}")
|
52 |
+
return None
|
53 |
+
|
54 |
+
# Function to answer questions
|
55 |
+
def answer_question(vector_store, query):
|
56 |
+
try:
|
57 |
+
logger.info(f"Answering query: {query}")
|
58 |
+
# Lighter LLM via pipeline for faster CPU inference
|
59 |
+
qa_pipeline = pipeline("text2text-generation", model="google/flan-t5-base")
|
60 |
+
|
61 |
+
# Retrieve top chunks
|
62 |
+
docs = vector_store.similarity_search(query, k=3)
|
63 |
+
context = "\n".join([doc.page_content for doc in docs])
|
64 |
+
|
65 |
+
# Prompt
|
66 |
+
prompt = f"Use this context to answer concisely: {context}\nQuestion: {query}\nAnswer:"
|
67 |
+
response = qa_pipeline(prompt, max_length=256, num_return_sequences=1)[0]['generated_text']
|
68 |
+
|
69 |
+
logger.info("Answer generated")
|
70 |
+
return response.strip()
|
71 |
+
except Exception as e:
|
72 |
+
logger.error(f"Answer generation error: {str(e)}")
|
73 |
+
st.error(f"Error answering: {str(e)}")
|
74 |
+
return "Unable to generate answer."
|
75 |
+
|
76 |
+
# Streamlit UI with chat history
|
77 |
+
st.title("Smart PDF Q&A")
|
78 |
+
st.write("Upload a PDF and ask questions! Chat history is preserved.")
|
79 |
+
|
80 |
+
# Initialize session state
|
81 |
+
if "messages" not in st.session_state:
|
82 |
+
st.session_state.messages = []
|
83 |
+
if "vector_store" not in st.session_state:
|
84 |
+
st.session_state.vector_store = None
|
85 |
+
|
86 |
+
# PDF upload and process
|
87 |
+
uploaded_file = st.file_uploader("Upload PDF", type="pdf")
|
88 |
+
if uploaded_file:
|
89 |
+
if st.button("Process PDF"):
|
90 |
+
with st.spinner("Processing..."):
|
91 |
+
vector_store = process_pdf(uploaded_file)
|
92 |
+
if vector_store:
|
93 |
+
st.session_state.vector_store = vector_store
|
94 |
+
st.success("PDF ready! Ask away.")
|
95 |
+
st.session_state.messages = [] # Reset chat on new PDF
|
96 |
+
|
97 |
+
# Display chat history
|
98 |
+
for message in st.session_state.messages:
|
99 |
+
with st.chat_message(message["role"]):
|
100 |
+
st.markdown(message["content"])
|
101 |
+
|
102 |
+
# Question input
|
103 |
+
if st.session_state.vector_store:
|
104 |
+
if prompt := st.chat_input("Ask a question:"):
|
105 |
+
# Add user message
|
106 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
107 |
+
with st.chat_message("user"):
|
108 |
+
st.markdown(prompt)
|
109 |
+
|
110 |
+
# Generate answer
|
111 |
+
with st.chat_message("assistant"):
|
112 |
+
with st.spinner("Thinking..."):
|
113 |
+
answer = answer_question(st.session_state.vector_store, prompt)
|
114 |
+
st.markdown(answer)
|
115 |
+
st.session_state.messages.append({"role": "assistant", "content": answer})
|
116 |
+
|
117 |
+
except Exception as e:
|
118 |
+
logger.error(f"App initialization failed: {str(e)}")
|
119 |
+
st.error(f"Initialization error: {str(e)}. Check logs or try factory reset.")
|