# AUTOGENERATED! DO NOT EDIT! File to edit: ../../lesson_2.ipynb. # %% auto 0 import gradio as gr __all__ = ['learn_inf', 'labels', 'title', 'description', 'article', 'examples', 'interpretation', 'enable_queue', 'predict'] # %% ../../lesson_2.ipynb 0 import fastai # %% ../../lesson_2.ipynb 1 import pandas # %% ../../lesson_2.ipynb 2 from fastai.vision.widgets import * # %% ../../lesson_2.ipynb 3 from fastai.vision.all import * # %% ../../lesson_2.ipynb 4 learn_inf = load_learner("./export.pkl") # %% ../../lesson_2.ipynb 6 labels = learn_inf.dls.vocab # %% ../../lesson_2.ipynb 7 def predict(img): img = PILImage.create(img) pred, pred_idx, probs = learn_inf.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} # %% ../../lesson_2.ipynb 8 # %% ../../lesson_2.ipynb 9 title = "Car Classifier" description = "Upload the image of a car to get its type. The model uses the resnet18 trained on a variety of images of cars." article = "

Made by aar2dee2

" examples = ['car2.jpeg', 'car3.jpeg', 'car4.jpeg', 'car5.jpg', 'car6.jpg', 'car7.jpg'] interpretation = 'default' enable_queue = True # %% ../../lesson_2.ipynb 10 gr.Interface( fn=predict, inputs=gr.inputs.Image(shape=(512, 512)), outputs=gr.outputs.Label(num_top_classes=3), title=title, description=description, article=article, examples=examples, interpretation=interpretation, enable_queue=enable_queue).launch(share=True)