Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer | |
# Set up device: use GPU if available, else CPU. | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# Load the fine-tuned model and tokenizer. | |
model_name = "aarohanverma/text2sql-flan-t5-base-qlora-finetuned" | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, torch_dtype=torch.bfloat16).to(device) | |
tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-base") | |
# For CPU inference, convert the model to FP32 for better compatibility. | |
if device.type == "cpu": | |
model = model.float() | |
# Optionally compile the model for speed improvements (requires PyTorch 2.0+). | |
try: | |
model = torch.compile(model) | |
except Exception as e: | |
print("torch.compile optimization failed:", e) | |
def generate_sql(context: str, query: str) -> str: | |
""" | |
Generates a SQL query given the provided context and natural language query. | |
Constructs a prompt from the inputs, then performs deterministic generation | |
using beam search with repetition handling. | |
""" | |
prompt = f"""Context: | |
{context} | |
Query: | |
{query} | |
Response: | |
""" | |
# Tokenize the prompt with truncation and max length; move to device. | |
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512).to(device) | |
# Ensure the decoder start token is set. | |
if model.config.decoder_start_token_id is None: | |
model.config.decoder_start_token_id = tokenizer.pad_token_id | |
# Generate SQL output using no_grad for optimized CPU usage. | |
with torch.no_grad(): | |
generated_ids = model.generate( | |
input_ids=inputs["input_ids"], | |
decoder_start_token_id=model.config.decoder_start_token_id, | |
max_new_tokens=100, | |
temperature=0.1, | |
num_beams=5, | |
repetition_penalty=1.2, | |
early_stopping=True, | |
) | |
# Decode and clean the generated SQL statement. | |
generated_sql = tokenizer.decode(generated_ids[0], skip_special_tokens=True) | |
generated_sql = generated_sql.split(";")[0].strip() + ";" # Keep only the first valid SQL query | |
return generated_sql | |
# Guide text with detailed instructions and an example. | |
guide_text = """ | |
**Overview:** | |
This app uses a fine-tuned FLAN-T5 model to generate SQL queries based on your inputs. | |
**How to Use:** | |
- **Context:** Enter your database schema (table definitions, DDL statements, sample data). | |
- **Query:** Enter a natural language query describing the desired SQL operation. | |
- Click **Generate SQL** to see the model-generated SQL query. | |
**Example:** | |
- **Context:** | |
CREATE TABLE students (id INT PRIMARY KEY, name VARCHAR(100), age INT, grade CHAR(1)); INSERT INTO students (id, name, age, grade) VALUES (1, 'Alice', 14, 'A'), (2, 'Bob', 15, 'B'); | |
- **Query:** | |
Retrieve the names of students who are 15 years old. | |
The generated SQL might look like: | |
SELECT name FROM students WHERE age = 15; | |
""" | |
# Create Gradio interface. | |
iface = gr.Interface( | |
fn=generate_sql, | |
inputs=[ | |
gr.Textbox(lines=8, label="Context", placeholder="Enter table schema, sample data, etc."), | |
gr.Textbox(lines=2, label="Query", placeholder="Enter your natural language query here...") | |
], | |
outputs="text", | |
title="Text-to-SQL Generator", | |
description=guide_text, | |
theme="default", # Use default theme to avoid loading warnings | |
flagging_mode="never" # Use flagging_mode instead of deprecated allow_flagging | |
) | |
iface.launch() | |