Spaces:
Running
Running
Fixed hallucinations
Browse files
app.py
CHANGED
@@ -14,7 +14,7 @@ def generate_sql(context: str, query: str) -> str:
|
|
14 |
"""
|
15 |
Generates a SQL query given the provided context and natural language query.
|
16 |
Constructs a prompt from the inputs, then performs deterministic generation
|
17 |
-
with beam search.
|
18 |
"""
|
19 |
prompt = f"""Context:
|
20 |
{context}
|
@@ -25,24 +25,28 @@ Query:
|
|
25 |
Response:
|
26 |
"""
|
27 |
# Tokenize the prompt and move to device
|
28 |
-
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
29 |
|
30 |
# Ensure decoder_start_token_id is set for encoder-decoder generation
|
31 |
if model.config.decoder_start_token_id is None:
|
32 |
model.config.decoder_start_token_id = tokenizer.pad_token_id
|
33 |
|
34 |
-
# Generate the SQL output
|
35 |
generated_ids = model.generate(
|
36 |
input_ids=inputs["input_ids"],
|
37 |
decoder_start_token_id=model.config.decoder_start_token_id,
|
38 |
-
max_new_tokens=
|
39 |
-
temperature=0.
|
40 |
-
num_beams=
|
41 |
-
|
|
|
42 |
)
|
43 |
|
44 |
-
# Decode and
|
45 |
-
|
|
|
|
|
|
|
46 |
|
47 |
# Create Gradio interface with two input boxes: one for context and one for query
|
48 |
iface = gr.Interface(
|
@@ -53,7 +57,9 @@ iface = gr.Interface(
|
|
53 |
],
|
54 |
outputs="text",
|
55 |
title="Text-to-SQL Generator",
|
56 |
-
description="Enter your own context (e.g., database schema and sample data) and a natural language query. The model will generate the corresponding SQL statement."
|
|
|
|
|
57 |
)
|
58 |
|
59 |
iface.launch()
|
|
|
14 |
"""
|
15 |
Generates a SQL query given the provided context and natural language query.
|
16 |
Constructs a prompt from the inputs, then performs deterministic generation
|
17 |
+
with beam search and repetition handling.
|
18 |
"""
|
19 |
prompt = f"""Context:
|
20 |
{context}
|
|
|
25 |
Response:
|
26 |
"""
|
27 |
# Tokenize the prompt and move to device
|
28 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512).to(device)
|
29 |
|
30 |
# Ensure decoder_start_token_id is set for encoder-decoder generation
|
31 |
if model.config.decoder_start_token_id is None:
|
32 |
model.config.decoder_start_token_id = tokenizer.pad_token_id
|
33 |
|
34 |
+
# Generate the SQL output with optimized parameters
|
35 |
generated_ids = model.generate(
|
36 |
input_ids=inputs["input_ids"],
|
37 |
decoder_start_token_id=model.config.decoder_start_token_id,
|
38 |
+
max_new_tokens=100,
|
39 |
+
temperature=0.1,
|
40 |
+
num_beams=5,
|
41 |
+
repetition_penalty=1.2,
|
42 |
+
early_stopping=True,
|
43 |
)
|
44 |
|
45 |
+
# Decode and clean the generated SQL statement
|
46 |
+
generated_sql = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
47 |
+
generated_sql = generated_sql.split(";")[0] + ";" # ✅ Ensures only the first valid SQL query is returned
|
48 |
+
|
49 |
+
return generated_sql
|
50 |
|
51 |
# Create Gradio interface with two input boxes: one for context and one for query
|
52 |
iface = gr.Interface(
|
|
|
57 |
],
|
58 |
outputs="text",
|
59 |
title="Text-to-SQL Generator",
|
60 |
+
description="Enter your own context (e.g., database schema and sample data) and a natural language query. The model will generate the corresponding SQL statement.",
|
61 |
+
theme="compact",
|
62 |
+
allow_flagging="never"
|
63 |
)
|
64 |
|
65 |
iface.launch()
|