Spaces:
Running
Running
Added app.py
Browse files
app.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
4 |
+
|
5 |
+
# Set up device (GPU if available)
|
6 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
7 |
+
|
8 |
+
# Load the fine-tuned model and tokenizer
|
9 |
+
model_name = "aarohanverma/text2sql-flan-t5-base-qlora-finetuned" # Replace with your model repo name
|
10 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, torch_dtype=torch.bfloat16).to(device)
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-base")
|
12 |
+
|
13 |
+
def generate_sql(context: str, query: str) -> str:
|
14 |
+
"""
|
15 |
+
Constructs a prompt using the user-provided context and query, then generates a SQL query.
|
16 |
+
"""
|
17 |
+
prompt = f"""Context:
|
18 |
+
{context}
|
19 |
+
|
20 |
+
Query:
|
21 |
+
{query}
|
22 |
+
|
23 |
+
Response:
|
24 |
+
"""
|
25 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
26 |
+
generated_ids = model.generate(
|
27 |
+
input_ids=inputs["input_ids"],
|
28 |
+
max_new_tokens=250,
|
29 |
+
temperature=0.0, # Deterministic output
|
30 |
+
num_beams=3, # Beam search for quality output
|
31 |
+
early_stopping=True,
|
32 |
+
)
|
33 |
+
return tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
34 |
+
|
35 |
+
# Create a Gradio interface with two input boxes: one for context, one for query.
|
36 |
+
iface = gr.Interface(
|
37 |
+
fn=generate_sql,
|
38 |
+
inputs=[
|
39 |
+
gr.Textbox(lines=8, label="Context", placeholder="Enter table schema, sample data, etc."),
|
40 |
+
gr.Textbox(lines=2, label="Query", placeholder="Enter your natural language query here...")
|
41 |
+
],
|
42 |
+
outputs="text",
|
43 |
+
title="Text-to-SQL Generator",
|
44 |
+
description="Enter your own context (e.g., database schema and sample data) and a natural language query. The model will generate the corresponding SQL statement."
|
45 |
+
)
|
46 |
+
|
47 |
+
iface.launch()
|