import gradio as gr import torch from transformers import AutoModelForSeq2SeqLM, AutoTokenizer # Set up device (GPU if available) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Load the fine-tuned model and tokenizer model_name = "aarohanverma/text2sql_flant5base_finetuned" # Replace with your model repository name model = AutoModelForSeq2SeqLM.from_pretrained(model_name, torch_dtype=torch.bfloat16).to(device) tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-base") def generate_sql(context: str, query: str) -> str: """ Generates a SQL query given the provided context and natural language query. Constructs a prompt from the inputs, then performs deterministic generation with beam search. """ prompt = f"""Context: {context} Query: {query} Response: """ # Tokenize the prompt and move to device inputs = tokenizer(prompt, return_tensors="pt").to(device) # Ensure decoder_start_token_id is set for encoder-decoder generation if model.config.decoder_start_token_id is None: model.config.decoder_start_token_id = tokenizer.pad_token_id # Generate the SQL output generated_ids = model.generate( input_ids=inputs["input_ids"], decoder_start_token_id=model.config.decoder_start_token_id, max_new_tokens=250, temperature=0.0, # Deterministic output num_beams=3, # Beam search for improved quality early_stopping=True, # Stop when output is complete ) # Decode and return the generated SQL statement return tokenizer.decode(generated_ids[0], skip_special_tokens=True) # Create Gradio interface with two input boxes: one for context and one for query iface = gr.Interface( fn=generate_sql, inputs=[ gr.Textbox(lines=8, label="Context", placeholder="Enter table schema, sample data, etc."), gr.Textbox(lines=2, label="Query", placeholder="Enter your natural language query here...") ], outputs="text", title="Text-to-SQL Generator", description="Enter your own context (e.g., database schema and sample data) and a natural language query. The model will generate the corresponding SQL statement." ) iface.launch()