import gradio as gr import torch from transformers import AutoModelForSeq2SeqLM, AutoTokenizer # Set up device: use GPU if available, else CPU. device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Load the fine-tuned model and tokenizer. model_name = "aarohanverma/text2sql-flan-t5-base-qlora-finetuned" model = AutoModelForSeq2SeqLM.from_pretrained(model_name, torch_dtype=torch.bfloat16).to(device) tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-base") # For CPU inference, convert the model to FP32 for better compatibility. if device.type == "cpu": model = model.float() # Optionally compile the model for speed improvements (requires PyTorch 2.0+). try: model = torch.compile(model) except Exception as e: print("torch.compile optimization failed:", e) def generate_sql(context: str, query: str) -> str: """ Generates a SQL query given the provided context and natural language query. Constructs a prompt from the inputs, then performs deterministic generation using beam search with repetition handling. """ prompt = f"""Context: {context} Query: {query} Response: """ # Tokenize the prompt with truncation and max length; move to device. inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512).to(device) # Ensure the decoder start token is set. if model.config.decoder_start_token_id is None: model.config.decoder_start_token_id = tokenizer.pad_token_id # Generate SQL output using no_grad for optimized CPU usage. with torch.no_grad(): generated_ids = model.generate( input_ids=inputs["input_ids"], decoder_start_token_id=model.config.decoder_start_token_id, max_new_tokens=100, temperature=0.1, num_beams=5, repetition_penalty=1.2, early_stopping=True, ) # Decode and clean the generated SQL statement. generated_sql = tokenizer.decode(generated_ids[0], skip_special_tokens=True) generated_sql = generated_sql.split(";")[0].strip() + ";" # Keep only the first valid SQL query return generated_sql # Guide text with detailed instructions and an example. guide_text = """ **Overview:** This app uses a fine-tuned FLAN-T5 model to generate SQL queries based on your inputs. **How to Use:** - **Context:** Enter your database schema (table definitions, DDL statements, sample data). - **Query:** Enter a natural language query describing the desired SQL operation. - Click **Generate SQL** to see the model-generated SQL query. **Example:** - **Context:** CREATE TABLE students (id INT PRIMARY KEY, name VARCHAR(100), age INT, grade CHAR(1)); INSERT INTO students (id, name, age, grade) VALUES (1, 'Alice', 14, 'A'), (2, 'Bob', 15, 'B'); - **Query:** Retrieve the names of students who are 15 years old. The generated SQL might look like: SELECT name FROM students WHERE age = 15; """ # Create Gradio interface. iface = gr.Interface( fn=generate_sql, inputs=[ gr.Textbox(lines=8, label="Context", placeholder="Enter table schema, sample data, etc."), gr.Textbox(lines=2, label="Query", placeholder="Enter your natural language query here...") ], outputs="text", title="Text-to-SQL Generator", description=guide_text, theme="default", # Use default theme to avoid loading warnings flagging_mode="never" # Use flagging_mode instead of deprecated allow_flagging ) iface.launch()