Update app.py
Browse files
app.py
CHANGED
@@ -1,81 +1,87 @@
|
|
1 |
import os
|
2 |
from getpass import getpass
|
3 |
-
import
|
4 |
-
from
|
5 |
-
from
|
6 |
-
|
7 |
-
from
|
8 |
-
from
|
9 |
-
from llama_index
|
10 |
from llama_index.node_parser import SemanticSplitterNodeParser
|
11 |
from llama_index.embeddings import OpenAIEmbedding
|
12 |
from llama_index.ingestion import IngestionPipeline
|
13 |
from llama_index.query_engine import RetrieverQueryEngine
|
|
|
|
|
|
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
pinecone_api_key = os.getenv("PINECONE_API_KEY")
|
18 |
openai_api_key = os.getenv("OPENAI_API_KEY")
|
|
|
19 |
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
#
|
22 |
embed_model = OpenAIEmbedding(api_key=openai_api_key)
|
23 |
-
|
24 |
-
# Define the initial pipeline
|
25 |
pipeline = IngestionPipeline(
|
26 |
transformations=[
|
27 |
SemanticSplitterNodeParser(
|
28 |
buffer_size=1,
|
29 |
breakpoint_percentile_threshold=95,
|
30 |
embed_model=embed_model,
|
31 |
-
|
32 |
embed_model,
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
# Initialize connection to Pinecone
|
39 |
-
pc = PineconeGRPC(api_key=pinecone_api_key)
|
40 |
-
index_name = os.getenv("INDEX_NAME")
|
41 |
-
|
42 |
-
# Initialize your index
|
43 |
-
pinecone_index = pc.Index(index_name)
|
44 |
-
|
45 |
-
# Initialize VectorStore
|
46 |
-
vector_store = PineconeVectorStore(pinecone_index=pinecone_index)
|
47 |
-
|
48 |
-
pinecone_index.describe_index_stats()
|
49 |
-
|
50 |
-
|
51 |
-
# Due to how LlamaIndex works here, if your Open AI API key was
|
52 |
-
# not set to an environment variable before, you have to set it at this point
|
53 |
-
if not os.getenv('OPENAI_API_KEY'):
|
54 |
-
os.environ['OPENAI_API_KEY'] = openai_api_key
|
55 |
-
|
56 |
-
# Instantiate VectorStoreIndex object from our vector_store object
|
57 |
vector_index = VectorStoreIndex.from_vector_store(vector_store=vector_store)
|
58 |
-
|
59 |
-
# Grab 5 search results
|
60 |
retriever = VectorIndexRetriever(index=vector_index, similarity_top_k=5)
|
61 |
-
|
62 |
-
|
63 |
-
# Pass in your retriever from above, which is configured to return the top 5 results
|
64 |
query_engine = RetrieverQueryEngine(retriever=retriever)
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
return
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
)
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
from getpass import getpass
|
3 |
+
import streamlit as st
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
from openai.embeddings_utils import OpenAIEmbeddings
|
6 |
+
from openai import OpenAI
|
7 |
+
from pinecone import PineconeClient, VectorStore
|
8 |
+
from faiss import IndexFlatL2
|
9 |
+
from llama_index import VectorStoreIndex, VectorIndexRetriever
|
10 |
from llama_index.node_parser import SemanticSplitterNodeParser
|
11 |
from llama_index.embeddings import OpenAIEmbedding
|
12 |
from llama_index.ingestion import IngestionPipeline
|
13 |
from llama_index.query_engine import RetrieverQueryEngine
|
14 |
+
from llama_index.memory import ConversationBufferMemory
|
15 |
+
from llama_index.chains import ConversationalRetrievalChain
|
16 |
+
from llama_index.prompts import user_template, bot_template, css
|
17 |
|
18 |
+
# Load environment variables
|
19 |
+
load_dotenv()
|
20 |
+
pinecone_api_key = os.getenv("PINECONE_API_KEY")
|
21 |
openai_api_key = os.getenv("OPENAI_API_KEY")
|
22 |
+
index_name = os.getenv("INDEX_NAME")
|
23 |
|
24 |
+
# Initialize OpenAI and Pinecone clients
|
25 |
+
openai.api_key = openai_api_key
|
26 |
+
pinecone_client = PineconeClient(api_key=pinecone_api_key)
|
27 |
+
pinecone_index = pinecone_client.Index(index_name)
|
28 |
+
vector_store = VectorStore(pinecone_index=pinecone_index)
|
29 |
|
30 |
+
# Initialize LlamaIndex components
|
31 |
embed_model = OpenAIEmbedding(api_key=openai_api_key)
|
|
|
|
|
32 |
pipeline = IngestionPipeline(
|
33 |
transformations=[
|
34 |
SemanticSplitterNodeParser(
|
35 |
buffer_size=1,
|
36 |
breakpoint_percentile_threshold=95,
|
37 |
embed_model=embed_model,
|
38 |
+
),
|
39 |
embed_model,
|
40 |
+
],
|
41 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
vector_index = VectorStoreIndex.from_vector_store(vector_store=vector_store)
|
|
|
|
|
43 |
retriever = VectorIndexRetriever(index=vector_index, similarity_top_k=5)
|
|
|
|
|
|
|
44 |
query_engine = RetrieverQueryEngine(retriever=retriever)
|
45 |
|
46 |
+
def get_vectorstore(text_chunks):
|
47 |
+
embeddings = OpenAIEmbeddings()
|
48 |
+
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
|
49 |
+
return vectorstore
|
50 |
+
|
51 |
+
def get_conversation_chain(vectorstore):
|
52 |
+
llm = OpenAI()
|
53 |
+
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
|
54 |
+
conversation_chain = ConversationalRetrievalChain.from_llm(
|
55 |
+
llm=llm,
|
56 |
+
retriever=vectorstore.as_retriever(),
|
57 |
+
memory=memory
|
58 |
+
)
|
59 |
+
return conversation_chain
|
60 |
+
|
61 |
+
def handle_userinput(user_question):
|
62 |
+
response = st.session_state.conversation({'question': user_question})
|
63 |
+
st.session_state.chat_history = response['chat_history']
|
64 |
+
|
65 |
+
for i, message in enumerate(st.session_state.chat_history):
|
66 |
+
if i % 2 == 0:
|
67 |
+
st.write(user_template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
|
68 |
+
else:
|
69 |
+
st.write(bot_template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
|
70 |
+
|
71 |
+
def main():
|
72 |
+
load_dotenv()
|
73 |
+
st.set_page_config(page_title="Chat with Annual Reports", page_icon=":books:")
|
74 |
+
st.write(css, unsafe_allow_html=True)
|
75 |
+
|
76 |
+
if "conversation" not in st.session_state:
|
77 |
+
st.session_state.conversation = None
|
78 |
+
if "chat_history" not in st.session_state:
|
79 |
+
st.session_state.chat_history = None
|
80 |
+
|
81 |
+
st.header("Chat with Annual Report Documents")
|
82 |
+
user_question = st.text_input("Ask a question about your documents:")
|
83 |
+
if user_question:
|
84 |
+
handle_userinput(user_question)
|
85 |
+
|
86 |
+
if __name__ == "__main__":
|
87 |
+
main()
|