Update app.py
Browse files
app.py
CHANGED
@@ -1,63 +1,78 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from huggingface_hub import InferenceClient
|
3 |
-
|
4 |
-
"""
|
5 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
-
"""
|
7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
-
|
9 |
-
|
10 |
-
def respond(
|
11 |
-
message,
|
12 |
-
history: list[tuple[str, str]],
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
-
|
20 |
-
for val in history:
|
21 |
-
if val[0]:
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
-
|
26 |
-
messages.append({"role": "user", "content": message})
|
27 |
-
|
28 |
-
response = ""
|
29 |
-
|
30 |
-
for message in client.chat_completion(
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
"""
|
43 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
44 |
-
"""
|
45 |
-
demo = gr.ChatInterface(
|
46 |
-
respond,
|
47 |
-
additional_inputs=[
|
48 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
49 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
50 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
51 |
-
gr.Slider(
|
52 |
-
minimum=0.1,
|
53 |
-
maximum=1.0,
|
54 |
-
value=0.95,
|
55 |
-
step=0.05,
|
56 |
-
label="Top-p (nucleus sampling)",
|
57 |
-
),
|
58 |
-
],
|
59 |
-
)
|
60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
-
|
63 |
-
|
|
|
1 |
+
import os
|
2 |
+
from getpass import getpass
|
3 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
+
pinecone_api_key = os.getenv("PINECONE_API_KEY") or getpass("Enter your Pinecone API Key: ")
|
6 |
+
openai_api_key = os.getenv("OPENAI_API_KEY") or getpass("Enter your OpenAI API Key: ")
|
7 |
+
|
8 |
+
from llama_index.node_parser import SemanticSplitterNodeParser
|
9 |
+
from llama_index.embeddings import OpenAIEmbedding
|
10 |
+
from llama_index.ingestion import IngestionPipeline
|
11 |
+
|
12 |
+
# This will be the model we use both for Node parsing and for vectorization
|
13 |
+
embed_model = OpenAIEmbedding(api_key=openai_api_key)
|
14 |
+
|
15 |
+
# Define the initial pipeline
|
16 |
+
pipeline = IngestionPipeline(
|
17 |
+
transformations=[
|
18 |
+
SemanticSplitterNodeParser(
|
19 |
+
buffer_size=1,
|
20 |
+
breakpoint_percentile_threshold=95,
|
21 |
+
embed_model=embed_model,
|
22 |
+
),
|
23 |
+
embed_model,
|
24 |
+
],
|
25 |
+
)
|
26 |
+
|
27 |
+
from pinecone.grpc import PineconeGRPC
|
28 |
+
from pinecone import ServerlessSpec
|
29 |
+
|
30 |
+
from llama_index.vector_stores import PineconeVectorStore
|
31 |
+
|
32 |
+
# Initialize connection to Pinecone
|
33 |
+
pc = PineconeGRPC(api_key=pinecone_api_key)
|
34 |
+
index_name = "anualreport"
|
35 |
+
|
36 |
+
# Initialize your index
|
37 |
+
pinecone_index = pc.Index(index_name)
|
38 |
+
|
39 |
+
# Initialize VectorStore
|
40 |
+
vector_store = PineconeVectorStore(pinecone_index=pinecone_index)
|
41 |
+
|
42 |
+
pinecone_index.describe_index_stats()
|
43 |
+
|
44 |
+
from llama_index import VectorStoreIndex
|
45 |
+
from llama_index.retrievers import VectorIndexRetriever
|
46 |
+
|
47 |
+
# Due to how LlamaIndex works here, if your Open AI API key was
|
48 |
+
# not set to an environment variable before, you have to set it at this point
|
49 |
+
if not os.getenv('OPENAI_API_KEY'):
|
50 |
+
os.environ['OPENAI_API_KEY'] = openai_api_key
|
51 |
+
|
52 |
+
# Instantiate VectorStoreIndex object from our vector_store object
|
53 |
+
vector_index = VectorStoreIndex.from_vector_store(vector_store=vector_store)
|
54 |
+
|
55 |
+
# Grab 5 search results
|
56 |
+
retriever = VectorIndexRetriever(index=vector_index, similarity_top_k=5)
|
57 |
+
|
58 |
+
from llama_index.query_engine import RetrieverQueryEngine
|
59 |
+
|
60 |
+
# Pass in your retriever from above, which is configured to return the top 5 results
|
61 |
+
query_engine = RetrieverQueryEngine(retriever=retriever)
|
62 |
+
|
63 |
+
# Define the function to handle user input and return the query response
|
64 |
+
def query_annual_report(summary_request):
|
65 |
+
llm_query = query_engine.query(summary_request)
|
66 |
+
return llm_query.response
|
67 |
+
|
68 |
+
# Create the Gradio interface
|
69 |
+
iface = gr.Interface(
|
70 |
+
fn=query_annual_report,
|
71 |
+
inputs="text",
|
72 |
+
outputs="text",
|
73 |
+
title="Annual Report Summary Query",
|
74 |
+
description="Enter your query to get the summary of the annual report."
|
75 |
+
)
|
76 |
|
77 |
+
# Launch the Gradio app
|
78 |
+
iface.launch()
|