Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
import os
|
|
|
2 |
import streamlit as st
|
3 |
from llama_index.node_parser import SemanticSplitterNodeParser
|
4 |
from llama_index.embeddings import OpenAIEmbedding
|
@@ -10,49 +11,55 @@ from llama_index import VectorStoreIndex
|
|
10 |
from llama_index.retrievers import VectorIndexRetriever
|
11 |
from llama_index.query_engine import RetrieverQueryEngine
|
12 |
|
13 |
-
# Streamlit
|
14 |
-
st.title("Annual Report Summary
|
15 |
-
pinecone_api_key = os.getenv("PINECONE_API_KEY")
|
16 |
-
openai_api_key = os.getenv("OPENAI_API_KEY")
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
37 |
|
38 |
-
|
39 |
-
|
|
|
40 |
|
41 |
-
|
42 |
-
|
|
|
|
|
43 |
|
44 |
-
|
|
|
45 |
|
46 |
-
|
47 |
-
|
|
|
|
|
|
|
48 |
|
49 |
-
#
|
50 |
-
|
|
|
51 |
|
52 |
-
|
53 |
-
|
54 |
|
55 |
-
user_query = st.text_input("Ask a question about the annual report:")
|
56 |
-
if st.button("Submit"):
|
57 |
-
llm_query = query_engine.query(user_query)
|
58 |
-
st.write(llm_query.response)
|
|
|
1 |
import os
|
2 |
+
from getpass import getpass
|
3 |
import streamlit as st
|
4 |
from llama_index.node_parser import SemanticSplitterNodeParser
|
5 |
from llama_index.embeddings import OpenAIEmbedding
|
|
|
11 |
from llama_index.retrievers import VectorIndexRetriever
|
12 |
from llama_index.query_engine import RetrieverQueryEngine
|
13 |
|
14 |
+
# Streamlit UI for API keys
|
15 |
+
st.title("Annual Report Summary Query")
|
|
|
|
|
16 |
|
17 |
+
# Retrieve API keys
|
18 |
+
pinecone_api_key = st.text_input("Enter your Pinecone API Key:", type="password")
|
19 |
+
openai_api_key = st.text_input("Enter your OpenAI API Key:", type="password")
|
20 |
|
21 |
+
# Initialize the model and pipeline
|
22 |
+
embed_model = OpenAIEmbedding(api_key=openai_api_key)
|
23 |
+
pipeline = IngestionPipeline(
|
24 |
+
transformations=[
|
25 |
+
SemanticSplitterNodeParser(
|
26 |
+
buffer_size=1,
|
27 |
+
breakpoint_percentile_threshold=95,
|
28 |
+
embed_model=embed_model,
|
29 |
+
),
|
30 |
+
embed_model,
|
31 |
+
],
|
32 |
+
)
|
33 |
|
34 |
+
# Initialize connection to Pinecone
|
35 |
+
pc = PineconeGRPC(api_key=pinecone_api_key)
|
36 |
+
index_name = "anualreport"
|
37 |
+
pinecone_index = pc.Index(index_name)
|
38 |
+
vector_store = PineconeVectorStore(pinecone_index=pinecone_index)
|
39 |
+
pinecone_index.describe_index_stats()
|
40 |
|
41 |
+
# Set OpenAI API key environment variable if not set
|
42 |
+
if not os.getenv('OPENAI_API_KEY'):
|
43 |
+
os.environ['OPENAI_API_KEY'] = openai_api_key
|
44 |
|
45 |
+
# Instantiate VectorStoreIndex object
|
46 |
+
vector_index = VectorStoreIndex.from_vector_store(vector_store=vector_store)
|
47 |
+
retriever = VectorIndexRetriever(index=vector_index, similarity_top_k=5)
|
48 |
+
query_engine = RetrieverQueryEngine(retriever=retriever)
|
49 |
|
50 |
+
# User query input
|
51 |
+
query = st.text_input("Enter your query:", "Summary of the Annual Report?")
|
52 |
|
53 |
+
# Process query and display results
|
54 |
+
if st.button("Get Summary"):
|
55 |
+
llm_query = query_engine.query(query)
|
56 |
+
st.write("Results:")
|
57 |
+
st.write(llm_query.response)
|
58 |
|
59 |
+
# Display each result
|
60 |
+
for idx, result in enumerate(llm_query.response):
|
61 |
+
st.write(f"Result {idx+1}: {result.get_content()}")
|
62 |
|
63 |
+
if __name__ == "__main__":
|
64 |
+
st._main_run_clExplicit('--runner', '-')
|
65 |
|
|
|
|
|
|
|
|