File size: 20,349 Bytes
819bacd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "import PyPDF2\n",
    "from PyPDF2 import PdfReader\n",
    "import os"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [],
   "source": [
    "import json\n",
    "from src.db_local_storage.files_db import VECTOR_FILES_DIRECTORY\n",
    "\n",
    "\n",
    "with open(VECTOR_FILES_DIRECTORY, \"r\") as file:\n",
    "    loaded_data = json.load(file)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 32,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[-0.09148407727479935, -0.3296155333518982, 0.19553515315055847, -0.13005883991718292, -0.023037904873490334, -0.27768027782440186, -0.15001057088375092, 0.061617735773324966, -0.21048811078071594, -0.1158759668469429, 0.00262309773825109, -0.18505680561065674, -0.36614593863487244, 0.01263430155813694, -0.23454351723194122, 0.026990391314029694, 0.10782455652952194, 0.20590373873710632, 0.01619311049580574, -0.29646965861320496, -0.49789899587631226, -0.3155633509159088, 0.22015143930912018, -0.17993934452533722, -0.2728782892227173, -0.24151268601417542, -0.2213350087404251, -0.1546640843153, 0.18654145300388336, -0.3817594647407532, 0.27131369709968567, -0.16452756524085999, 0.4666154384613037, -0.23997938632965088, -0.16251197457313538, 0.45274969935417175, -0.06473690271377563, 0.030141692608594894, 0.18030805885791779, 0.3573063910007477, 0.057827189564704895, -0.5050416588783264, 0.14762045443058014, -0.24115344882011414, 0.12714245915412903, -0.30607476830482483, 0.03628716245293617, -0.1717076599597931, -0.07239308208227158, -0.10611303895711899, -0.20394517481327057, -0.357207328081131, 0.07243036478757858, -0.27321791648864746, -0.005590340122580528, 0.18584828078746796, 0.14657430350780487, 0.00868619792163372, -0.23141932487487793, -0.15293444693088531, 0.4537033438682556, -0.050794072449207306, -0.1081295758485794, 0.24416445195674896, 0.32709094882011414, -0.1073112040758133, -0.002160100731998682, -0.14978720247745514, -0.08192038536071777, 0.04925680160522461, 0.08451664447784424, -0.10695666819810867, -0.3269720673561096, -0.011846603825688362, 0.1591711789369583, 0.03670593723654747, 0.27853694558143616, 0.057576391845941544, 0.627304196357727, -0.09007762372493744, 0.3147648274898529, 0.040534473955631256, -0.1886814385652542, 0.07377851009368896, -0.11277369409799576, -0.06923136860132217, 0.23174744844436646, 0.12746192514896393, 0.24344752728939056, -0.07483936846256256, 0.16249415278434753, -0.279635488986969, -0.16499225795269012, -0.28518205881118774, 0.2098291516304016, 0.27612876892089844, -0.28646302223205566, 0.1196957528591156, -0.3333701193332672, 0.04434604197740555, -0.2624748647212982, -0.21890603005886078, -0.08524201810359955, -0.0075501492246985435, -0.4198438227176666, -0.0592561811208725, -0.10367451608181, -0.1156446784734726, 0.1438761055469513, 0.0052966708317399025, -0.09201934933662415, 0.36266717314720154, -0.21685782074928284, 0.1420959085226059, 0.10085764527320862, 0.02429366298019886, -0.10447590798139572, -0.1402379870414734, 0.14102685451507568, 0.10799302160739899, -0.17230382561683655, -0.15043006837368011, 0.07193934917449951, 0.1495690643787384, -0.019986119121313095, -0.0347922220826149, -0.27049851417541504, 0.13336730003356934, -0.11616193503141403, 0.2649662494659424, 0.330400675535202, 0.04918519780039787, 0.12089464068412781, -0.09495944529771805, -0.28842809796333313, 0.04238158464431763, 0.05436383932828903, -0.08257465064525604, -0.031113239005208015, -0.11439044773578644, 0.06356312334537506, 0.16110284626483917, -0.4002474248409271, -0.014672113582491875, 0.330425888299942, -0.03440795838832855, 0.19075387716293335, -0.3702341616153717, -0.19534951448440552, 0.1684616357088089, -0.09864974766969681, 0.12697818875312805, 0.1819300651550293, 0.07670610398054123, 0.3232901692390442, 0.04667458310723305, 0.09191926568746567, 0.06742186844348907, 0.026456736028194427, -0.02663232572376728, -0.17225997149944305, 0.19716386497020721, 0.02224832773208618, -0.03200436756014824, -0.08198100328445435, -0.2442745566368103, 0.06113841384649277, 0.0807797834277153, 0.04088904708623886, 0.2907366454601288, 0.22261427342891693, 0.10915300250053406, 0.017830494791269302, -0.02144521474838257, 0.4247247576713562, -0.007936686277389526, 0.20204278826713562, 0.17006978392601013, 0.04741619527339935, 0.31061092019081116, 0.12313715368509293, -0.13362251222133636, 0.3784801661968231, 0.16054050624370575, 0.08082814514636993, 0.05647144094109535, -0.0050701238214969635, 0.07090428471565247, -0.41181671619415283, 0.08139584213495255, -0.2981043756008148, 0.011231742799282074, 0.02322234958410263, 0.03604107350111008, 0.01680818758904934, 0.07644037157297134, 0.2796001136302948, 0.014765125699341297, 0.025432690978050232, 0.2253454178571701, -0.21646393835544586, -0.21112558245658875, -0.12944644689559937, 0.08615317195653915, -0.19481784105300903, -0.02482978068292141, -0.2655474543571472, 0.18308250606060028, 0.1057799756526947, 0.46467578411102295, 0.13872161507606506, -0.16284668445587158, -0.10319432616233826, 0.28903090953826904, -0.049684423953294754, -0.11852547526359558, 0.15179845690727234, 0.4315755367279053, 0.16684380173683167, 0.21633920073509216, -0.23727011680603027, 0.23591041564941406, -0.236463725566864, -0.10205617547035217, -0.38227447867393494, -0.3208659291267395, -0.16321201622486115, -0.2047148197889328, 0.035120557993650436, 0.1217074990272522, -0.09423492103815079, 0.10800852626562119, -0.12016260623931885, -0.01766962558031082, -0.21207456290721893, 0.18253299593925476, 0.09813184291124344, -0.14369548857212067, -0.4996097981929779, 0.05356284976005554, -0.13140559196472168, -0.10310748219490051, -0.3297559916973114, 0.13165785372257233, 0.29243674874305725, 0.6235761046409607, -0.018105201423168182, 0.4351204037666321, -0.3157229423522949, 0.14044661819934845, 0.32561150193214417, -0.045231807976961136, -0.22902421653270721, -0.04736926779150963, 0.00638209143653512, 0.2657054662704468, -0.1663697361946106, 0.21721374988555908, 0.06596962362527847, 0.4710530638694763, 0.1495056301355362, -0.2131609320640564, -0.09281381219625473, 0.33491361141204834, 0.26699742674827576, -0.0664362758398056, -0.3143211007118225, -0.11612315475940704, 0.09384771436452866, -0.31450754404067993, -0.14105857908725739, -0.1692599505186081, 0.15440012514591217, 0.021970681846141815, -0.2492946833372116, -0.19831828773021698, 0.11038780957460403, -0.2564508020877838, -0.09789401292800903, 0.014864001423120499, 0.33063599467277527, -0.08587673306465149, 0.3573816120624542, 0.262990802526474, -0.23019948601722717, -0.06639422476291656, 0.13446615636348724, -0.3160199522972107, -0.2009458839893341, 0.0011719531612470746, 0.05401983484625816, 0.11232183128595352, -0.2915894389152527, 0.04823492094874382, -0.11993903666734695, 0.1691748946905136, 0.10592252761125565, 0.11075671762228012, -0.20100106298923492, -0.0010831565596163273, 0.1340765357017517, -0.18890692293643951, -0.04269295558333397, -0.008131876587867737, -0.16146209836006165, -0.09385553747415543, 0.14291250705718994, 0.11386755108833313, 0.10874597728252411, 0.30922049283981323, -0.1316504329442978, 0.09756156802177429, 0.10346060246229172, -0.09867636114358902, -0.022087613120675087, 0.00240744068287313, -0.18236050009727478, 0.14601346850395203, -0.03863060474395752, -0.05868404731154442, 0.09617110341787338, -0.031769558787345886, 0.2660558223724365, 0.327562540769577, -0.083442322909832, 0.20325987040996552, -0.5998589396476746, -0.312290757894516, -0.060986027121543884, -0.03271651640534401, -0.21090127527713776, -0.22981834411621094, 0.05871429294347763, 0.34688451886177063, 0.20736956596374512, 0.13843078911304474, -0.08390390127897263, 0.38931000232696533, -0.1773708462715149, -0.35399889945983887, 0.2373276948928833, 0.05349014699459076, 0.08039376884698868, -0.11689640581607819, -0.14542360603809357, -0.2895090878009796, -0.12660722434520721, 0.5266510248184204, -0.09322528541088104, 0.02377072535455227, -0.12724241614341736, 0.3590814471244812, -0.13123689591884613, -0.10675929486751556, 0.3575019836425781, 0.09733907878398895, -0.027689877897500992, -0.0075003644451498985, 0.08631216734647751, 0.07380516082048416, -0.03189918026328087, 0.5251277089118958, 0.007510041352361441, 0.022245241329073906, 0.0560171902179718, 0.17317497730255127, -0.06186212971806526, -0.22594772279262543, 0.2666807770729065, 0.016032816842198372, 0.12344001233577728, -0.12985070049762726, 0.19014285504817963, 0.17215973138809204, 0.20680564641952515, 0.08599716424942017, 0.057784561067819595, -0.21372999250888824, 0.14019109308719635, 0.287504106760025, -0.019741084426641464, -0.2658323645591736, -0.4153008759021759, -0.0035018271300941706]\n"
     ]
    }
   ],
   "source": [
    "for document in loaded_data.values():\n",
    "  print(document[\"data\"][0][\"embedding\"])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 33,
   "metadata": {},
   "outputs": [],
   "source": [
    "def organize_db(db):\n",
    "  text_data = [] \n",
    "  embeddings = []\n",
    "\n",
    "  for document in db.values():\n",
    "    for page in document[\"data\"]:\n",
    "      text_data.append(page[\"metadata\"][\"original_text\"])\n",
    "      embeddings.append(page[\"embedding\"])\n",
    "  return text_data, embeddings\n",
    "\n",
    "    "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 34,
   "metadata": {},
   "outputs": [],
   "source": [
    "text_data, embeddings = organize_db(loaded_data)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 44,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "['Dear Hiring Manager,\\nI am writing to express my interest in the Machine Learning / AI Scientist position at Grazper.\\nWith a strong background in human-centered artificial intelligence, hands-on experience in\\ndeveloping machine learning models, and a deep passion for applying AI to solve real-world\\nproblems, I am excited about the opportunity to contribute to Grazper’s innovative work in\\nhuman pose estimation and behavioral analysis.\\nMy role as Co-Founder of NeoCareU had provided me with extensive experience',\n",
       " ' in\\ndeveloping Python-based infrastructures for graph search functionality, utilizing frameworks\\nsuch as FastAPI and Uvicorn. I have led end-to-end development of features, improving user\\nexperiences and backend processes with technologies like Node.js and TypeScript. This\\nexperience has sharpened my software development skills and my ability to translate\\ncomplex machine learning concepts into practical applications, a key requirement for the role\\nat Grazper.\\nIn addition to my professional experience, I hol',\n",
       " 'd a Master’s in Human-Centered Artificial\\nIntelligence from Denmark’s Technical University. During my studies, I focused on computer\\nvision and deep learning, gaining familiarity with models such as AlphaPose with its\\nResNet-50 backbone for 2D pose estimation, and MotionBERT for 3D pose estimation.\\nThese skills will be invaluable in collaborating with the diverse and talented team at Grazper.\\nThank you for considering my application. I am eager to bring my skills in machine learning,\\ncomputer vision, and so',\n",
       " 'ftware development to Grazper and to help drive the continued\\ninnovation that the company is known for. I look forward to the possibility of discussing how\\nmy background, skills, and experiences align with the needs of your team.\\nSincerely,']"
      ]
     },
     "execution_count": 44,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "text_data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 41,
   "metadata": {},
   "outputs": [],
   "source": [
    "def lexical_search(query: str, chunks: list) -> list:\n",
    "        return [chunk for chunk in chunks if query.lower() in chunk.lower()]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "from transformers import pipeline\n",
    "\n",
    "qa_pipeline = pipeline(\n",
    "            \"question-answering\", model=\"deepset/roberta-base-squad2\"\n",
    "        )\n",
    "\n",
    "query = \"What is the capital of Germany?\"\n",
    "context = \"The capital of Germany is Paris\"\n",
    "response = qa_pipeline(question=query, context=context)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{'message': 'Paris',\n",
       " 'context_used': 'The capital of Germany is Paris',\n",
       " 'chunks': 'The capital of Germany is Paris'}"
      ]
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "{\"message\": response['answer'], \"context_used\": context, \"chunks\": context}\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 48,
   "metadata": {},
   "outputs": [],
   "source": [
    "from typing import List\n",
    "import numpy as np\n",
    "\n",
    "def semantic_search(query: str, chunks: List[str], embeddings: np.ndarray, model) -> List[str]:\n",
    "    query_embedding = model.encode([query])\n",
    "    similarities = np.dot(embeddings, query_embedding.T).flatten()\n",
    "    top_indices = np.argsort(-similarities)[:3]  # Get top 3 results\n",
    "    return [chunks[i] for i in top_indices]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 47,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[' in\\ndeveloping Python-based infrastructures for graph search functionality, utilizing frameworks\\nsuch as FastAPI and Uvicorn. I have led end-to-end development of features, improving user\\nexperiences and backend processes with technologies like Node.js and TypeScript. This\\nexperience has sharpened my software development skills and my ability to translate\\ncomplex machine learning concepts into practical applications, a key requirement for the role\\nat Grazper.\\nIn addition to my professional experience, I hol',\n",
       " 'ftware development to Grazper and to help drive the continued\\ninnovation that the company is known for. I look forward to the possibility of discussing how\\nmy background, skills, and experiences align with the needs of your team.\\nSincerely,']"
      ]
     },
     "execution_count": 47,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "lexical_search(\"ware\", text_data)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "True\n",
      "True\n"
     ]
    }
   ],
   "source": [
    "# file_path = \"/home/alexabades/DocuRAG/Api/src/db_local_storage/files/doc_test.pdf\"\n",
    "file_path = \"/home/alexabades/DocuRAG/Api/doc_test.pdf\"\n",
    "\n",
    "print(os.path.exists(file_path))\n",
    "print(os.access(file_path, os.R_OK))\n",
    "\n",
    "with open(file_path, \"rb\") as pdf_file:\n",
    "    reader = PdfReader(pdf_file)\n",
    "    text = \"\"\n",
    "    for page in reader.pages:\n",
    "        text += page.extract_text()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [],
   "source": [
    "import pdfplumber\n",
    "\n",
    "# with pdfplumber.open(file_path) as pdf:\n",
    "#     first_page = pdf.pages[0]\n",
    "#     print(first_page.extract_text())\n",
    "\n",
    "with pdfplumber.open(file_path) as pdf:\n",
    "    text = \"\"\n",
    "    for page in pdf.pages:\n",
    "        text += page.extract_text()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [],
   "source": [
    "def chunk_text(text, chunk_size=512):\n",
    "    chunks = [text[i : i + chunk_size] for i in range(0, len(text), chunk_size)]\n",
    "    return chunks"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {},
   "outputs": [],
   "source": [
    "chunks = chunk_text(text)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/home/alexabades/DocuRAG/Api/venv/lib/python3.10/site-packages/sentence_transformers/cross_encoder/CrossEncoder.py:11: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
      "  from tqdm.autonotebook import tqdm, trange\n",
      "/home/alexabades/DocuRAG/Api/venv/lib/python3.10/site-packages/torch/cuda/__init__.py:128: UserWarning: CUDA initialization: The NVIDIA driver on your system is too old (found version 11070). Please update your GPU driver by downloading and installing a new version from the URL: http://www.nvidia.com/Download/index.aspx Alternatively, go to: https://pytorch.org to install a PyTorch version that has been compiled with your version of the CUDA driver. (Triggered internally at ../c10/cuda/CUDAFunctions.cpp:108.)\n",
      "  return torch._C._cuda_getDeviceCount() > 0\n",
      "/home/alexabades/DocuRAG/Api/venv/lib/python3.10/site-packages/transformers/tokenization_utils_base.py:1601: FutureWarning: `clean_up_tokenization_spaces` was not set. It will be set to `True` by default. This behavior will be depracted in transformers v4.45, and will be then set to `False` by default. For more details check this issue: https://github.com/huggingface/transformers/issues/31884\n",
      "  warnings.warn(\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Dear Hiring Manager,\n",
      "I am writing to express my interest in the Machine Learning / AI Scientist position at Grazper.\n",
      "With a strong background in human-centered artificial intelligence, hands-on experience in\n",
      "developing machine learning models, and a deep passion for applying AI to solve real-world\n",
      "problems, I am excited about the opportunity to contribute to Grazper’s innovative work in\n",
      "human pose estimation and behavioral analysis.\n",
      "My role as Co-Founder of NeoCareU had provided me with extensive experience\n"
     ]
    }
   ],
   "source": [
    "from sentence_transformers import SentenceTransformer\n",
    "\n",
    "\n",
    "model = SentenceTransformer(\"paraphrase-MiniLM-L6-v2\")\n",
    "\n",
    "embeddings = []\n",
    "for chunk in chunks:\n",
    "    embeddings.append(model.encode(chunk))\n",
    "    print(chunk)\n",
    "    break"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {},
   "outputs": [],
   "source": [
    "path = \"/home/alexabades/DocuRAG/Api/src/db_local_storage/vectorized_db/vectorized_data.json\"\n",
    "\n",
    "import json\n",
    "\n",
    "with open(path, \"r\") as f:\n",
    "    loaded_data = json.load(f)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{}"
      ]
     },
     "execution_count": 24,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "loaded_data[\"emedding_data\"]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "pdf_reader = PyPDF2.PdfReader(io.BytesIO(pdf_file.file.read()))\n",
    "text = \"\"\n",
    "for page_num in range(pdf_reader.numPages):\n",
    "    page = pdf_reader.getPage(page_num)\n",
    "    text += page.extract_text()"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "venv",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.12"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}