Spaces:
Sleeping
Sleeping
File size: 22,545 Bytes
8fbb714 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 |
import gradio as gr
import os
import json
import networkx as nx
import pandas as pd
import plotly.graph_objects as go
import re
import sys
import sqlite3
import tempfile
import time
import uvicorn
from contextlib import contextmanager
from fastapi import FastAPI, Request
from fastapi.middleware.cors import CORSMiddleware
from gradio.routes import mount_gradio_app
from plotly.subplots import make_subplots
from tabulate import tabulate
from typing import Optional
ROOT_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
if ROOT_DIR not in sys.path:
sys.path.insert(0, ROOT_DIR)
from scripts.create_db import ArxivDatabase
from config import (
DEFAULT_TABLES_DIR,
DEFAULT_INTERFACE_MODEL_ID,
COOCCURRENCE_QUERY,
canned_queries,
)
app = FastAPI()
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
db: Optional[ArxivDatabase] = None
last_update_time = 0
update_delay = 0.5 # Delay in seconds
def truncate_or_wrap_text(text, max_length=50, wrap=False):
"""Truncate text to a maximum length, adding ellipsis if truncated, or wrap if specified."""
if wrap:
return "\n".join(
text[i : i + max_length] for i in range(0, len(text), max_length)
)
return text[:max_length] + "..." if len(text) > max_length else text
def format_url(url):
"""Format URL to be more compact in the table."""
return url.split("/")[-1] if url.startswith("http") else url
def get_db_path():
"""Get the database directory path based on environment"""
# First try local path
ROOT = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
tables_dir = os.path.join(ROOT, DEFAULT_TABLES_DIR)
if not os.path.exists(tables_dir):
# If running on Spaces, try the root directory
tables_dir = os.path.join(ROOT, "data", "databases")
if not os.path.exists(tables_dir):
print(f"No database directory found")
return None
print(f"Using database directory: {tables_dir}")
return tables_dir
def get_available_databases():
"""Get available databases from either local path or Hugging Face cache."""
tables_dir = get_db_path()
if not tables_dir:
return []
files = os.listdir(tables_dir)
print(f"All files found: {files}")
# Include all files except .md files
databases = [f for f in files if not f.endswith(".md")]
print(f"Database files: {databases}")
return databases
def query_db(query, is_sql, limit=None, wrap=False):
global db
if db is None:
return pd.DataFrame({"Error": ["Please load a database first."]})
try:
with sqlite3.connect(db.db_path) as conn:
cursor = conn.cursor()
query = " ".join(query.strip().split("\n")).rstrip(";")
if limit is not None:
if "LIMIT" in query.upper():
# Replace existing LIMIT clause
query = re.sub(
r"LIMIT\s+\d+", f"LIMIT {limit}", query, flags=re.IGNORECASE
)
else:
query += f" LIMIT {limit}"
cursor.execute(query)
column_names = [description[0] for description in cursor.description]
results = cursor.fetchall()
df = pd.DataFrame(results, columns=column_names)
for column in df.columns:
if df[column].dtype == "object":
df[column] = df[column].apply(
lambda x: (
format_url(x)
if column == "url"
else truncate_or_wrap_text(x, wrap=wrap)
)
)
return df
except sqlite3.Error as e:
return pd.DataFrame({"Error": [f"Database error: {str(e)}"]})
except Exception as e:
return pd.DataFrame({"Error": [f"An unexpected error occurred: {str(e)}"]})
def generate_concept_cooccurrence_graph(db_path, tag_type=None):
conn = sqlite3.connect(db_path)
query = COOCCURRENCE_QUERY
if tag_type and tag_type != "All":
query = query.replace(
"WHERE p1.tag_type = p2.tag_type",
f"WHERE p1.tag_type = p2.tag_type AND p1.tag_type = '{tag_type}'",
)
df = pd.read_sql_query(query, conn)
conn.close()
G = nx.from_pandas_edgelist(df, "concept1", "concept2", "co_occurrences")
pos = nx.spring_layout(G, k=0.5, iterations=50)
edge_trace = go.Scatter(
x=[], y=[], line=dict(width=0.5, color="#888"), hoverinfo="none", mode="lines"
)
node_trace = go.Scatter(
x=[],
y=[],
mode="markers",
hoverinfo="text",
marker=dict(
showscale=True,
colorscale="YlGnBu",
size=10,
colorbar=dict(
thickness=15,
title="Node Connections",
xanchor="left",
titleside="right",
),
),
)
def update_traces(selected_node=None, depth=0):
nonlocal edge_trace, node_trace
if selected_node and depth > 0:
nodes_to_show = set([selected_node])
frontier = set([selected_node])
for _ in range(depth):
new_frontier = set()
for node in frontier:
new_frontier.update(G.neighbors(node))
nodes_to_show.update(new_frontier)
frontier = new_frontier
sub_G = G.subgraph(nodes_to_show)
else:
sub_G = G
edge_x, edge_y = [], []
for edge in sub_G.edges():
x0, y0 = pos[edge[0]]
x1, y1 = pos[edge[1]]
edge_x.extend([x0, x1, None])
edge_y.extend([y0, y1, None])
edge_trace.x = edge_x
edge_trace.y = edge_y
node_x, node_y = [], []
for node in sub_G.nodes():
x, y = pos[node]
node_x.append(x)
node_y.append(y)
node_trace.x = node_x
node_trace.y = node_y
node_adjacencies = []
node_text = []
for node in sub_G.nodes():
adjacencies = list(G.adj[node])
node_adjacencies.append(len(adjacencies))
node_text.append(f"{node}<br># of connections: {len(adjacencies)}")
node_trace.marker.color = node_adjacencies
node_trace.text = node_text
update_traces()
fig = go.Figure(
data=[edge_trace, node_trace],
layout=go.Layout(
title=f'Concept Co-occurrence Network {f"({tag_type})" if tag_type and tag_type != "All" else ""}',
titlefont_size=16,
showlegend=False,
hovermode="closest",
margin=dict(b=20, l=5, r=5, t=40),
annotations=[
dict(
text="",
showarrow=False,
xref="paper",
yref="paper",
x=0.005,
y=-0.002,
)
],
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
),
)
fig.update_layout(
updatemenus=[
dict(
type="buttons",
direction="left",
buttons=[
dict(
args=[{"visible": [True, True]}],
label="Full Graph",
method="update",
),
dict(
args=[
{
"visible": [True, True],
"xaxis.range": [-1, 1],
"yaxis.range": [-1, 1],
}
],
label="Core View",
method="relayout",
),
dict(
args=[
{
"visible": [True, True],
"xaxis.range": [-0.2, 0.2],
"yaxis.range": [-0.2, 0.2],
}
],
label="Detailed View",
method="relayout",
),
],
pad={"r": 10, "t": 10},
showactive=True,
x=0.11,
xanchor="left",
y=1.1,
yanchor="top",
),
]
)
return fig, G, pos, update_traces
def load_database_with_graphs(db_name):
"""Load database from either local path or Hugging Face cache."""
global db
tables_dir = get_db_path()
if not tables_dir:
return f"No database directory found.", None
db_path = os.path.join(tables_dir, db_name)
if not os.path.exists(db_path):
return f"Database {db_name} does not exist.", None
db = ArxivDatabase(db_path)
db.init_db()
if db.is_db_empty:
return (
f"Database loaded from {db_path}, but it is empty. Please populate it with data.",
None,
)
graph, _, _, _ = generate_concept_cooccurrence_graph(db_path)
return f"Database loaded from {db_path}", graph
css = """
#selected-query {
max-height: 100px;
overflow-y: auto;
white-space: pre-wrap;
word-break: break-word;
}
"""
def create_demo():
with gr.Blocks() as demo:
gr.Markdown("# ArXiv Database Query Interface")
with gr.Row():
db_dropdown = gr.Dropdown(
choices=get_available_databases(),
label="Select Database",
value=get_available_databases(),
)
# load_db_btn = gr.Button("Load Database", size="sm")
status = gr.Textbox(label="Status")
with gr.Row():
graph_output = gr.Plot(label="Concept Co-occurrence Graph")
with gr.Row():
tag_type_dropdown = gr.Dropdown(
choices=[
"All",
"model",
"task",
"dataset",
"field",
"modality",
"method",
"object",
"property",
"instrument",
],
label="Select Tag Type",
value="All",
)
highlight_input = gr.Textbox(label="Highlight Concepts (comma-separated)")
with gr.Row():
node_dropdown = gr.Dropdown(label="Select Node", choices=[])
depth_slider = gr.Slider(
minimum=0, maximum=5, step=1, value=0, label="Connection Depth"
)
update_graph_button = gr.Button("Update Graph")
with gr.Row():
wrap_checkbox = gr.Checkbox(label="Wrap long text", value=False)
canned_query_dropdown = gr.Dropdown(
choices=[q[0] for q in canned_queries], label="Select Query", scale=3
)
limit_input = gr.Number(
label="Limit", value=10000, step=1, minimum=1, scale=1
)
selected_query = gr.Textbox(
label="Selected Query",
interactive=False,
scale=2,
show_label=True,
show_copy_button=True,
elem_id="selected-query",
)
canned_query_submit = gr.Button("Submit Query", size="sm", scale=1)
with gr.Row():
sql_input = gr.Textbox(label="Custom SQL Query", lines=3, scale=4)
sql_submit = gr.Button("Submit Custom SQL", size="sm", scale=1)
# with gr.Row():
# nl_query_input = gr.Textbox(
# label="Natural Language Query", lines=2, scale=4
# )
# nl_query_submit = gr.Button("Convert to SQL", size="sm", scale=1)
output = gr.DataFrame(label="Results", wrap=True)
with gr.Row():
copy_button = gr.Button("Copy as Markdown")
download_button = gr.Button("Download as CSV")
def debounced_update_graph(
db_name, tag_type, highlight_concepts, selected_node, depth
):
global last_update_time
current_time = time.time()
if current_time - last_update_time < update_delay:
return None, [] # Return early if not enough time has passed
last_update_time = current_time
if not db_name:
return None, []
ROOT = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
db_path = os.path.join(ROOT, DEFAULT_TABLES_DIR, db_name)
fig, G, pos, update_traces = generate_concept_cooccurrence_graph(
db_path, tag_type
)
if isinstance(selected_node, list):
selected_node = selected_node[0] if selected_node else None
highlight_nodes = (
[node.strip() for node in highlight_concepts.split(",")]
if highlight_concepts
else []
)
primary_node = highlight_nodes[0] if highlight_nodes else None
if primary_node and primary_node in G.nodes():
# Apply node selection and depth filter
nodes_to_show = set([primary_node])
if depth > 0:
frontier = set([primary_node])
for _ in range(depth):
new_frontier = set()
for node in frontier:
new_frontier.update(G.neighbors(node))
nodes_to_show.update(new_frontier)
frontier = new_frontier
sub_G = G.subgraph(nodes_to_show)
# Update traces with the filtered graph
edge_x, edge_y = [], []
for edge in sub_G.edges():
x0, y0 = pos[edge[0]]
x1, y1 = pos[edge[1]]
edge_x.extend([x0, x1, None])
edge_y.extend([y0, y1, None])
fig.data[0].x = edge_x
fig.data[0].y = edge_y
node_x, node_y = [], []
for node in sub_G.nodes():
x, y = pos[node]
node_x.append(x)
node_y.append(y)
fig.data[1].x = node_x
fig.data[1].y = node_y
# Color nodes based on their distance from the primary node and highlight status
node_colors = []
node_sizes = []
for node in sub_G.nodes():
if node in highlight_nodes:
node_colors.append(
"rgba(255,0,0,1)"
) # Red for highlighted nodes
node_sizes.append(15)
else:
distance = nx.shortest_path_length(
sub_G, source=primary_node, target=node
)
intensity = max(0, 1 - (distance / (depth + 1)))
node_colors.append(f"rgba(0,0,255,{intensity})")
node_sizes.append(10)
fig.data[1].marker.color = node_colors
fig.data[1].marker.size = node_sizes
# Update node text
node_text = [
f"{node}<br># of connections: {len(list(G.neighbors(node)))}"
for node in sub_G.nodes()
]
fig.data[1].text = node_text
# Get connected nodes for dropdown
connected_nodes = sorted(list(G.neighbors(primary_node)))
else:
# If no primary node or it's not in the graph, show the full graph
connected_nodes = sorted(list(G.nodes()))
return fig, connected_nodes
def update_node_dropdown(highlight_concepts):
if not highlight_concepts or not db:
return gr.Dropdown(choices=[])
ROOT = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
db_path = os.path.join(ROOT, DEFAULT_TABLES_DIR, db.db_path)
_, G, _, _ = generate_concept_cooccurrence_graph(db_path)
primary_node = highlight_concepts.split(",")[0].strip()
if primary_node in G.nodes():
connected_nodes = sorted(list(G.neighbors(primary_node)))
return gr.Dropdown(choices=connected_nodes)
else:
return gr.Dropdown(choices=[])
def update_selected_query(query_description):
for desc, sql in canned_queries:
if desc == query_description:
return sql
return ""
def submit_canned_query(query_description, limit, wrap):
for desc, sql in canned_queries:
if desc == query_description:
return query_db(sql, True, limit, wrap)
return pd.DataFrame({"Error": ["Selected query not found."]})
def copy_as_markdown(df):
return df.to_markdown()
def download_as_csv(df):
if df is None or df.empty:
return None
with tempfile.NamedTemporaryFile(
mode="w", delete=False, suffix=".csv"
) as temp_file:
df.to_csv(temp_file.name, index=False)
temp_file_path = temp_file.name
return temp_file_path
# def nl_to_sql(nl_query):
# # Placeholder function for natural language to SQL conversion
# return f"SELECT * FROM papers WHERE abstract LIKE '%{nl_query}%' LIMIT 10;"
db_dropdown.change(
load_database_with_graphs,
inputs=[db_dropdown],
outputs=[status, graph_output],
)
# db_dropdown.change(
# debounced_update_graph,
# inputs=[db_dropdown, tag_type_dropdown, highlight_input, node_dropdown, depth_slider],
# outputs=[graph_output, node_dropdown],
# )
tag_type_dropdown.change(
debounced_update_graph,
inputs=[
db_dropdown,
tag_type_dropdown,
highlight_input,
node_dropdown,
depth_slider,
],
outputs=[graph_output, node_dropdown],
)
highlight_input.change(
update_node_dropdown,
inputs=[highlight_input],
outputs=[node_dropdown],
)
# node_dropdown.change(
# debounced_update_graph,
# inputs=[db_dropdown, tag_type_dropdown, highlight_input, node_dropdown, depth_slider],
# outputs=[graph_output, node_dropdown],
# )
# depth_slider.change(
# debounced_update_graph,
# inputs=[db_dropdown, tag_type_dropdown, highlight_input, node_dropdown, depth_slider],
# outputs=[graph_output, node_dropdown],
# )
update_graph_button.click(
debounced_update_graph,
inputs=[
db_dropdown,
tag_type_dropdown,
highlight_input,
node_dropdown,
depth_slider,
],
outputs=[graph_output, node_dropdown],
)
canned_query_dropdown.change(
update_selected_query,
inputs=[canned_query_dropdown],
outputs=[selected_query],
)
canned_query_submit.click(
submit_canned_query,
inputs=[canned_query_dropdown, limit_input, wrap_checkbox],
outputs=output,
)
sql_submit.click(
query_db,
inputs=[sql_input, gr.Checkbox(value=True), limit_input, wrap_checkbox],
outputs=output,
)
copy_button.click(
copy_as_markdown,
inputs=[output],
outputs=[gr.Textbox(label="Markdown Output", show_copy_button=True)],
)
download_button.click(
download_as_csv, inputs=[output], outputs=[gr.File(label="CSV Output")]
)
# nl_query_submit.click(nl_to_sql, inputs=[nl_query_input], outputs=[sql_input])
return demo
demo = create_demo()
def close_db():
global db
if db is not None:
db.close()
db = None
def launch():
print("Launching Gradio app...", flush=True)
shared_demo = demo.launch(share=True, prevent_thread_lock=True)
if isinstance(shared_demo, tuple):
if len(shared_demo) >= 2:
local_url, share_url = shared_demo[:2]
else:
local_url, share_url = shared_demo[0], "N/A"
else:
local_url = getattr(shared_demo, "local_url", "N/A")
share_url = getattr(shared_demo, "share_url", "N/A")
print(f"Local URL: {local_url}", flush=True)
print(f"Shareable link: {share_url}", flush=True)
print(
"Gradio app launched.",
flush=True,
)
# Keep the script running
demo.block_thread()
if __name__ == "__main__":
launch()
# Mount the Gradio app
# app = mount_gradio_app(app, demo, path="/")
# print(f"Shareable link: {demo.share_url}")
# @app.exception_handler(Exception)
# async def exception_handler(request: Request, exc: Exception):
# print(f"An error occurred: {str(exc)}")
# return {"error": str(exc)}
# @contextmanager
# def get_db_connection():
# global db
# conn = db.conn.cursor().connection
# try:
# yield conn
# finally:
# conn.close()
# @app.on_event("startup")
# async def startup_event():
# global db
# ROOT = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
# db_path = os.path.join(ROOT, DEFAULT_TABLES_DIR, get_available_databases()[0]) # Use the first available database
# db = ArxivDatabase(db_path)
# db.init_db()
# @app.on_event("shutdown")
# async def shutdown_event():
# if db is not None:
# db.close()
# if __name__ == "__main__":
# uvicorn.run(app, host="0.0.0.0", port=7860)
|