File size: 7,333 Bytes
a2b5ed5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import json
import random
import re

# import spacy
import torch

from config import (
    DEFAULT_FEW_SHOT_NUM,
    DEFAULT_FEW_SHOT_SELECTION,
    DEFAULT_TEMPERATURE,
    DEFAULT_TOP_P,
    DEFAULT_KIND,
)
from typing import List, Dict, Tuple, Union
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig

from .extractions import extract_all_tagged_phrases

# nlp = spacy.load("en_core_web_sm")


# TODO: run with constituency tests
# TODO: review instruction and system level prompt (currently they are repetitive)
def get_sentences(text: str) -> List[str]:
    # TODO: spacy splitting results in unequal lengths
    # doc = nlp(text)
    # sentences = [sent.text.strip() for sent in doc.sents]
    # sentences = [s for s in sentences if s]
    # return sentences

    return text.split(". ")


def format_instance(sentence: str, extraction: Union[str, None]) -> str:
    return "".join(
        [
            f"Sentence: {sentence}\n",
            (
                f"Extractions:\n{extraction}\n"
                if extraction is not None
                else f"Extractions:\n"
            ),
        ]
    )


def generate_instructions(schema: dict, kind: str = DEFAULT_KIND) -> str:
    instruction_parts = [
        "The following schema is provided to tag the title and abstract of a given scientific paper as shown in the examples:\n"
    ]
    if kind == "json":
        instruction_parts.append(f"{json.dumps(schema, indent=2)}\n\n")
    elif kind == "readable":
        readable_schema = ""
        for tag, description in schema.items():
            readable_schema += f"{tag}: {description}\n"
        instruction_parts.append(f"{readable_schema}\n")
    else:
        raise ValueError(f"Invalid kind: {kind}")

    return "".join(instruction_parts)


def generate_demonstrations(
    examples: List[dict],
    kind: str = DEFAULT_KIND,
    num_examples: int = DEFAULT_FEW_SHOT_NUM,
    selection: str = DEFAULT_FEW_SHOT_SELECTION,
) -> str:
    demonstration_parts = []
    for example in examples:
        sentences = get_sentences(example["abstract"])
        tagged_sentences = get_sentences(example["tagged_abstract"])
        paired_sentences = list(zip(sentences, tagged_sentences, strict=True))

        if selection == "random":
            selected_pairs = random.sample(
                paired_sentences, min(num_examples, len(paired_sentences))
            )
        elif selection == "first":
            selected_pairs = paired_sentences[:num_examples]
        elif selection == "last":
            selected_pairs = paired_sentences[-num_examples:]
        elif selection == "middle":
            start = max(0, (len(paired_sentences) - num_examples) // 2)
            selected_pairs = paired_sentences[start : start + num_examples]
        elif selection == "distributed":
            step = max(1, len(paired_sentences) // num_examples)
            selected_pairs = paired_sentences[::step][:num_examples]
        elif selection == "longest":
            selected_pairs = sorted(
                paired_sentences, key=lambda x: len(x[0]), reverse=True
            )[:num_examples]
        elif selection == "shortest":
            selected_pairs = sorted(paired_sentences, key=lambda x: len(x[0]))[
                :num_examples
            ]
        else:
            raise ValueError(f"Invalid selection method: {selection}")

        for sentence, tagged_sentence in selected_pairs:
            tag_to_phrase = extract_all_tagged_phrases(tagged_sentence)
            if kind == "json":
                extractions = f"{json.dumps(tag_to_phrase, indent=2)}\n"
            elif kind == "readable":
                extractions = "".join(
                    f"{tag}: {', '.join(phrase)}\n"
                    for tag, phrase in tag_to_phrase.items()
                )
            else:
                raise ValueError(f"Invalid kind: {kind}")

            demonstration_parts.append(format_instance(sentence, extractions))

    return "".join(demonstration_parts)


def generate_prefix(instructions: str, demonstrations: str) -> str:
    return f"{instructions}" f"{demonstrations}"


def generate_prediction(
    model,
    tokenizer,
    prefix: str,
    input: str,
    kind: str,
    system_prompt: str = f"You are an assistant who tags papers according to given schema and "
    "only returns the tagged phrases in the format as provided in the examples "
    "without repeating anything else.",
    temperature: float = DEFAULT_TEMPERATURE,
    top_p: float = DEFAULT_TOP_P,
) -> str:
    prompt = prefix + input
    messages = [
        {
            "role": "system",
            "content": system_prompt,
        },
        {"role": "user", "content": prompt},
    ]

    input_ids = tokenizer.apply_chat_template(
        messages,
        # add_generation_prompt=True,
        return_tensors="pt",
    ).to(model.device)

    terminators = [
        tokenizer.eos_token_id,
        tokenizer.convert_tokens_to_ids("<|eot_id|>"),
    ]

    outputs = model.generate(
        input_ids,
        max_new_tokens=1200,
        eos_token_id=terminators,
        # num_beams=8,
        do_sample=True,
        temperature=temperature,
        top_p=top_p,
    )
    response = outputs[0][input_ids.shape[-1] :]
    prediction_response = tokenizer.decode(response, skip_special_tokens=True)

    return prediction_response


def batch_generate_prediction(
    model,
    tokenizer,
    prefix: str,
    input_ids: torch.Tensor,
    kind: str,
    system_prompt: str = "You are an assistant who tags papers according to given schema and "
    "only returns the tagged phrases in the format as provided in the examples "
    "without repeating anything else.",
    temperature: float = DEFAULT_TEMPERATURE,
    top_p: float = DEFAULT_TOP_P,
    max_new_tokens: int = 1200,
    batch_size: int = 1,
    device: torch.device = torch.device("cuda" if torch.cuda.is_available() else "cpu"),
) -> List[str]:
    all_predictions = []

    # Prepare system message
    system_message = {"role": "system", "content": system_prompt}

    for i in range(0, input_ids.size(0), batch_size):
        batch_input_ids = input_ids[i : i + batch_size]

        batch_messages = [
            [
                system_message,
                {
                    "role": "user",
                    "content": prefix + tokenizer.decode(ids, skip_special_tokens=True),
                },
            ]
            for ids in batch_input_ids
        ]

        batch_input_ids = tokenizer.apply_chat_template(
            batch_messages, return_tensors="pt", padding=True, truncation=True
        ).to(device)

        with torch.no_grad():
            outputs = model.generate(
                batch_input_ids,
                max_new_tokens=max_new_tokens,
                do_sample=True,
                temperature=temperature,
                top_p=top_p,
                pad_token_id=tokenizer.pad_token_id,
                attention_mask=batch_input_ids.ne(tokenizer.pad_token_id),
            )

        for output in outputs:
            response = output[batch_input_ids.size(1) :]
            prediction_response = tokenizer.decode(response, skip_special_tokens=True)
            all_predictions.append(prediction_response)

        torch.cuda.empty_cache()

    return all_predictions