Spaces:
Sleeping
Sleeping
File size: 7,333 Bytes
a2b5ed5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
import json
import random
import re
# import spacy
import torch
from config import (
DEFAULT_FEW_SHOT_NUM,
DEFAULT_FEW_SHOT_SELECTION,
DEFAULT_TEMPERATURE,
DEFAULT_TOP_P,
DEFAULT_KIND,
)
from typing import List, Dict, Tuple, Union
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
from .extractions import extract_all_tagged_phrases
# nlp = spacy.load("en_core_web_sm")
# TODO: run with constituency tests
# TODO: review instruction and system level prompt (currently they are repetitive)
def get_sentences(text: str) -> List[str]:
# TODO: spacy splitting results in unequal lengths
# doc = nlp(text)
# sentences = [sent.text.strip() for sent in doc.sents]
# sentences = [s for s in sentences if s]
# return sentences
return text.split(". ")
def format_instance(sentence: str, extraction: Union[str, None]) -> str:
return "".join(
[
f"Sentence: {sentence}\n",
(
f"Extractions:\n{extraction}\n"
if extraction is not None
else f"Extractions:\n"
),
]
)
def generate_instructions(schema: dict, kind: str = DEFAULT_KIND) -> str:
instruction_parts = [
"The following schema is provided to tag the title and abstract of a given scientific paper as shown in the examples:\n"
]
if kind == "json":
instruction_parts.append(f"{json.dumps(schema, indent=2)}\n\n")
elif kind == "readable":
readable_schema = ""
for tag, description in schema.items():
readable_schema += f"{tag}: {description}\n"
instruction_parts.append(f"{readable_schema}\n")
else:
raise ValueError(f"Invalid kind: {kind}")
return "".join(instruction_parts)
def generate_demonstrations(
examples: List[dict],
kind: str = DEFAULT_KIND,
num_examples: int = DEFAULT_FEW_SHOT_NUM,
selection: str = DEFAULT_FEW_SHOT_SELECTION,
) -> str:
demonstration_parts = []
for example in examples:
sentences = get_sentences(example["abstract"])
tagged_sentences = get_sentences(example["tagged_abstract"])
paired_sentences = list(zip(sentences, tagged_sentences, strict=True))
if selection == "random":
selected_pairs = random.sample(
paired_sentences, min(num_examples, len(paired_sentences))
)
elif selection == "first":
selected_pairs = paired_sentences[:num_examples]
elif selection == "last":
selected_pairs = paired_sentences[-num_examples:]
elif selection == "middle":
start = max(0, (len(paired_sentences) - num_examples) // 2)
selected_pairs = paired_sentences[start : start + num_examples]
elif selection == "distributed":
step = max(1, len(paired_sentences) // num_examples)
selected_pairs = paired_sentences[::step][:num_examples]
elif selection == "longest":
selected_pairs = sorted(
paired_sentences, key=lambda x: len(x[0]), reverse=True
)[:num_examples]
elif selection == "shortest":
selected_pairs = sorted(paired_sentences, key=lambda x: len(x[0]))[
:num_examples
]
else:
raise ValueError(f"Invalid selection method: {selection}")
for sentence, tagged_sentence in selected_pairs:
tag_to_phrase = extract_all_tagged_phrases(tagged_sentence)
if kind == "json":
extractions = f"{json.dumps(tag_to_phrase, indent=2)}\n"
elif kind == "readable":
extractions = "".join(
f"{tag}: {', '.join(phrase)}\n"
for tag, phrase in tag_to_phrase.items()
)
else:
raise ValueError(f"Invalid kind: {kind}")
demonstration_parts.append(format_instance(sentence, extractions))
return "".join(demonstration_parts)
def generate_prefix(instructions: str, demonstrations: str) -> str:
return f"{instructions}" f"{demonstrations}"
def generate_prediction(
model,
tokenizer,
prefix: str,
input: str,
kind: str,
system_prompt: str = f"You are an assistant who tags papers according to given schema and "
"only returns the tagged phrases in the format as provided in the examples "
"without repeating anything else.",
temperature: float = DEFAULT_TEMPERATURE,
top_p: float = DEFAULT_TOP_P,
) -> str:
prompt = prefix + input
messages = [
{
"role": "system",
"content": system_prompt,
},
{"role": "user", "content": prompt},
]
input_ids = tokenizer.apply_chat_template(
messages,
# add_generation_prompt=True,
return_tensors="pt",
).to(model.device)
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>"),
]
outputs = model.generate(
input_ids,
max_new_tokens=1200,
eos_token_id=terminators,
# num_beams=8,
do_sample=True,
temperature=temperature,
top_p=top_p,
)
response = outputs[0][input_ids.shape[-1] :]
prediction_response = tokenizer.decode(response, skip_special_tokens=True)
return prediction_response
def batch_generate_prediction(
model,
tokenizer,
prefix: str,
input_ids: torch.Tensor,
kind: str,
system_prompt: str = "You are an assistant who tags papers according to given schema and "
"only returns the tagged phrases in the format as provided in the examples "
"without repeating anything else.",
temperature: float = DEFAULT_TEMPERATURE,
top_p: float = DEFAULT_TOP_P,
max_new_tokens: int = 1200,
batch_size: int = 1,
device: torch.device = torch.device("cuda" if torch.cuda.is_available() else "cpu"),
) -> List[str]:
all_predictions = []
# Prepare system message
system_message = {"role": "system", "content": system_prompt}
for i in range(0, input_ids.size(0), batch_size):
batch_input_ids = input_ids[i : i + batch_size]
batch_messages = [
[
system_message,
{
"role": "user",
"content": prefix + tokenizer.decode(ids, skip_special_tokens=True),
},
]
for ids in batch_input_ids
]
batch_input_ids = tokenizer.apply_chat_template(
batch_messages, return_tensors="pt", padding=True, truncation=True
).to(device)
with torch.no_grad():
outputs = model.generate(
batch_input_ids,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
top_p=top_p,
pad_token_id=tokenizer.pad_token_id,
attention_mask=batch_input_ids.ne(tokenizer.pad_token_id),
)
for output in outputs:
response = output[batch_input_ids.size(1) :]
prediction_response = tokenizer.decode(response, skip_special_tokens=True)
all_predictions.append(prediction_response)
torch.cuda.empty_cache()
return all_predictions
|