import gradio as gr
import os
import json
import networkx as nx
import pandas as pd
import plotly.graph_objects as go
import re
import sys
import sqlite3
import tempfile
import time
import uvicorn
from contextlib import contextmanager
from fastapi import FastAPI, Request
from fastapi.middleware.cors import CORSMiddleware
from gradio.routes import mount_gradio_app
from plotly.subplots import make_subplots
from tabulate import tabulate
from typing import Optional
ROOT_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
if ROOT_DIR not in sys.path:
sys.path.insert(0, ROOT_DIR)
from scripts.create_db import ArxivDatabase
from config import (
DEFAULT_TABLES_DIR,
DEFAULT_INTERFACE_MODEL_ID,
COOCCURRENCE_QUERY,
canned_queries,
)
app = FastAPI()
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
db: Optional[ArxivDatabase] = None
last_update_time = 0
update_delay = 0.5 # Delay in seconds
def truncate_or_wrap_text(text, max_length=50, wrap=False):
"""Truncate text to a maximum length, adding ellipsis if truncated, or wrap if specified."""
if wrap:
return "\n".join(
text[i : i + max_length] for i in range(0, len(text), max_length)
)
return text[:max_length] + "..." if len(text) > max_length else text
def format_url(url):
"""Format URL to be more compact in the table."""
return url.split("/")[-1] if url.startswith("http") else url
def get_db_path():
"""Get the database directory path based on environment"""
# First try local path
ROOT = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
tables_dir = os.path.join(ROOT, DEFAULT_TABLES_DIR)
if not os.path.exists(tables_dir):
# If running on Spaces, try the root directory
tables_dir = os.path.join(ROOT, "data", "databases")
if not os.path.exists(tables_dir):
print(f"No database directory found")
return None
print(f"Using database directory: {tables_dir}")
return tables_dir
def get_available_databases():
"""Get available databases from either local path or Hugging Face cache."""
tables_dir = get_db_path()
if not tables_dir:
return []
files = os.listdir(tables_dir)
print(f"All files found: {files}")
# Include all files except .md files
databases = [f for f in files if not f.endswith(".md")]
print(f"Database files: {databases}")
return databases
def query_db(query, is_sql, limit=None, wrap=False):
global db
if db is None:
return pd.DataFrame({"Error": ["Please load a database first."]})
try:
with sqlite3.connect(db.db_path) as conn:
cursor = conn.cursor()
query = " ".join(query.strip().split("\n")).rstrip(";")
if limit is not None:
if "LIMIT" in query.upper():
# Replace existing LIMIT clause
query = re.sub(
r"LIMIT\s+\d+", f"LIMIT {limit}", query, flags=re.IGNORECASE
)
else:
query += f" LIMIT {limit}"
cursor.execute(query)
column_names = [description[0] for description in cursor.description]
results = cursor.fetchall()
df = pd.DataFrame(results, columns=column_names)
for column in df.columns:
if df[column].dtype == "object":
df[column] = df[column].apply(
lambda x: (
format_url(x)
if column == "url"
else truncate_or_wrap_text(x, wrap=wrap)
)
)
return df
except sqlite3.Error as e:
return pd.DataFrame({"Error": [f"Database error: {str(e)}"]})
except Exception as e:
return pd.DataFrame({"Error": [f"An unexpected error occurred: {str(e)}"]})
def generate_concept_cooccurrence_graph(db_path, tag_type=None):
conn = sqlite3.connect(db_path)
query = COOCCURRENCE_QUERY
if tag_type and tag_type != "All":
query = query.replace(
"WHERE p1.tag_type = p2.tag_type",
f"WHERE p1.tag_type = p2.tag_type AND p1.tag_type = '{tag_type}'",
)
df = pd.read_sql_query(query, conn)
conn.close()
G = nx.from_pandas_edgelist(df, "concept1", "concept2", "co_occurrences")
pos = nx.spring_layout(G, k=0.5, iterations=50)
edge_trace = go.Scatter(
x=[], y=[], line=dict(width=0.5, color="#888"), hoverinfo="none", mode="lines"
)
node_trace = go.Scatter(
x=[],
y=[],
mode="markers",
hoverinfo="text",
marker=dict(
showscale=True,
colorscale="YlGnBu",
size=10,
colorbar=dict(
thickness=15,
title="Node Connections",
xanchor="left",
titleside="right",
),
),
)
def update_traces(selected_node=None, depth=0):
nonlocal edge_trace, node_trace
if selected_node and depth > 0:
nodes_to_show = set([selected_node])
frontier = set([selected_node])
for _ in range(depth):
new_frontier = set()
for node in frontier:
new_frontier.update(G.neighbors(node))
nodes_to_show.update(new_frontier)
frontier = new_frontier
sub_G = G.subgraph(nodes_to_show)
else:
sub_G = G
edge_x, edge_y = [], []
for edge in sub_G.edges():
x0, y0 = pos[edge[0]]
x1, y1 = pos[edge[1]]
edge_x.extend([x0, x1, None])
edge_y.extend([y0, y1, None])
edge_trace.x = edge_x
edge_trace.y = edge_y
node_x, node_y = [], []
for node in sub_G.nodes():
x, y = pos[node]
node_x.append(x)
node_y.append(y)
node_trace.x = node_x
node_trace.y = node_y
node_adjacencies = []
node_text = []
for node in sub_G.nodes():
adjacencies = list(G.adj[node])
node_adjacencies.append(len(adjacencies))
node_text.append(f"{node}
# of connections: {len(adjacencies)}")
node_trace.marker.color = node_adjacencies
node_trace.text = node_text
update_traces()
fig = go.Figure(
data=[edge_trace, node_trace],
layout=go.Layout(
title=f'Concept Co-occurrence Network {f"({tag_type})" if tag_type and tag_type != "All" else ""}',
titlefont_size=16,
showlegend=False,
hovermode="closest",
margin=dict(b=20, l=5, r=5, t=40),
annotations=[
dict(
text="",
showarrow=False,
xref="paper",
yref="paper",
x=0.005,
y=-0.002,
)
],
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
),
)
fig.update_layout(
updatemenus=[
dict(
type="buttons",
direction="left",
buttons=[
dict(
args=[{"visible": [True, True]}],
label="Full Graph",
method="update",
),
dict(
args=[
{
"visible": [True, True],
"xaxis.range": [-1, 1],
"yaxis.range": [-1, 1],
}
],
label="Core View",
method="relayout",
),
dict(
args=[
{
"visible": [True, True],
"xaxis.range": [-0.2, 0.2],
"yaxis.range": [-0.2, 0.2],
}
],
label="Detailed View",
method="relayout",
),
],
pad={"r": 10, "t": 10},
showactive=True,
x=0.11,
xanchor="left",
y=1.1,
yanchor="top",
),
]
)
return fig, G, pos, update_traces
def load_database_with_graphs(db_name):
"""Load database from either local path or Hugging Face cache."""
global db
tables_dir = get_db_path()
if not tables_dir:
return f"No database directory found.", None
db_path = os.path.join(tables_dir, db_name)
if not os.path.exists(db_path):
return f"Database {db_name} does not exist.", None
db = ArxivDatabase(db_path)
db.init_db()
if db.is_db_empty:
return (
f"Database loaded from {db_path}, but it is empty. Please populate it with data.",
None,
)
graph, _, _, _ = generate_concept_cooccurrence_graph(db_path)
return f"Database loaded from {db_path}", graph
css = """
#selected-query {
max-height: 100px;
overflow-y: auto;
white-space: pre-wrap;
word-break: break-word;
}
"""
def create_demo():
with gr.Blocks() as demo:
gr.Markdown("# ArXiv Database Query Interface")
with gr.Row():
db_dropdown = gr.Dropdown(
choices=get_available_databases(),
label="Select Database",
value=get_available_databases(),
)
# load_db_btn = gr.Button("Load Database", size="sm")
status = gr.Textbox(label="Status")
with gr.Row():
graph_output = gr.Plot(label="Concept Co-occurrence Graph")
with gr.Row():
tag_type_dropdown = gr.Dropdown(
choices=[
"All",
"model",
"task",
"dataset",
"field",
"modality",
"method",
"object",
"property",
"instrument",
],
label="Select Tag Type",
value="All",
)
highlight_input = gr.Textbox(label="Highlight Concepts (comma-separated)")
with gr.Row():
node_dropdown = gr.Dropdown(label="Select Node", choices=[])
depth_slider = gr.Slider(
minimum=0, maximum=5, step=1, value=0, label="Connection Depth"
)
update_graph_button = gr.Button("Update Graph")
with gr.Row():
wrap_checkbox = gr.Checkbox(label="Wrap long text", value=False)
canned_query_dropdown = gr.Dropdown(
choices=[q[0] for q in canned_queries], label="Select Query", scale=3
)
limit_input = gr.Number(
label="Limit", value=10000, step=1, minimum=1, scale=1
)
selected_query = gr.Textbox(
label="Selected Query",
interactive=False,
scale=2,
show_label=True,
show_copy_button=True,
elem_id="selected-query",
)
canned_query_submit = gr.Button("Submit Query", size="sm", scale=1)
with gr.Row():
sql_input = gr.Textbox(label="Custom SQL Query", lines=3, scale=4)
sql_submit = gr.Button("Submit Custom SQL", size="sm", scale=1)
# with gr.Row():
# nl_query_input = gr.Textbox(
# label="Natural Language Query", lines=2, scale=4
# )
# nl_query_submit = gr.Button("Convert to SQL", size="sm", scale=1)
output = gr.DataFrame(label="Results", wrap=True)
with gr.Row():
copy_button = gr.Button("Copy as Markdown")
download_button = gr.Button("Download as CSV")
def debounced_update_graph(
db_name, tag_type, highlight_concepts, selected_node, depth
):
global last_update_time
current_time = time.time()
if current_time - last_update_time < update_delay:
return None, [] # Return early if not enough time has passed
last_update_time = current_time
if not db_name:
return None, []
ROOT = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
db_path = os.path.join(ROOT, DEFAULT_TABLES_DIR, db_name)
fig, G, pos, update_traces = generate_concept_cooccurrence_graph(
db_path, tag_type
)
if isinstance(selected_node, list):
selected_node = selected_node[0] if selected_node else None
highlight_nodes = (
[node.strip() for node in highlight_concepts.split(",")]
if highlight_concepts
else []
)
primary_node = highlight_nodes[0] if highlight_nodes else None
if primary_node and primary_node in G.nodes():
# Apply node selection and depth filter
nodes_to_show = set([primary_node])
if depth > 0:
frontier = set([primary_node])
for _ in range(depth):
new_frontier = set()
for node in frontier:
new_frontier.update(G.neighbors(node))
nodes_to_show.update(new_frontier)
frontier = new_frontier
sub_G = G.subgraph(nodes_to_show)
# Update traces with the filtered graph
edge_x, edge_y = [], []
for edge in sub_G.edges():
x0, y0 = pos[edge[0]]
x1, y1 = pos[edge[1]]
edge_x.extend([x0, x1, None])
edge_y.extend([y0, y1, None])
fig.data[0].x = edge_x
fig.data[0].y = edge_y
node_x, node_y = [], []
for node in sub_G.nodes():
x, y = pos[node]
node_x.append(x)
node_y.append(y)
fig.data[1].x = node_x
fig.data[1].y = node_y
# Color nodes based on their distance from the primary node and highlight status
node_colors = []
node_sizes = []
for node in sub_G.nodes():
if node in highlight_nodes:
node_colors.append(
"rgba(255,0,0,1)"
) # Red for highlighted nodes
node_sizes.append(15)
else:
distance = nx.shortest_path_length(
sub_G, source=primary_node, target=node
)
intensity = max(0, 1 - (distance / (depth + 1)))
node_colors.append(f"rgba(0,0,255,{intensity})")
node_sizes.append(10)
fig.data[1].marker.color = node_colors
fig.data[1].marker.size = node_sizes
# Update node text
node_text = [
f"{node}
# of connections: {len(list(G.neighbors(node)))}"
for node in sub_G.nodes()
]
fig.data[1].text = node_text
# Get connected nodes for dropdown
connected_nodes = sorted(list(G.neighbors(primary_node)))
else:
# If no primary node or it's not in the graph, show the full graph
connected_nodes = sorted(list(G.nodes()))
return fig, connected_nodes
def update_node_dropdown(highlight_concepts):
if not highlight_concepts or not db:
return gr.Dropdown(choices=[])
ROOT = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
db_path = os.path.join(ROOT, DEFAULT_TABLES_DIR, db.db_path)
_, G, _, _ = generate_concept_cooccurrence_graph(db_path)
primary_node = highlight_concepts.split(",")[0].strip()
if primary_node in G.nodes():
connected_nodes = sorted(list(G.neighbors(primary_node)))
return gr.Dropdown(choices=connected_nodes)
else:
return gr.Dropdown(choices=[])
def update_selected_query(query_description):
for desc, sql in canned_queries:
if desc == query_description:
return sql
return ""
def submit_canned_query(query_description, limit, wrap):
for desc, sql in canned_queries:
if desc == query_description:
return query_db(sql, True, limit, wrap)
return pd.DataFrame({"Error": ["Selected query not found."]})
def copy_as_markdown(df):
return df.to_markdown()
def download_as_csv(df):
if df is None or df.empty:
return None
with tempfile.NamedTemporaryFile(
mode="w", delete=False, suffix=".csv"
) as temp_file:
df.to_csv(temp_file.name, index=False)
temp_file_path = temp_file.name
return temp_file_path
# def nl_to_sql(nl_query):
# # Placeholder function for natural language to SQL conversion
# return f"SELECT * FROM papers WHERE abstract LIKE '%{nl_query}%' LIMIT 10;"
db_dropdown.change(
load_database_with_graphs,
inputs=[db_dropdown],
outputs=[status, graph_output],
)
# db_dropdown.change(
# debounced_update_graph,
# inputs=[db_dropdown, tag_type_dropdown, highlight_input, node_dropdown, depth_slider],
# outputs=[graph_output, node_dropdown],
# )
tag_type_dropdown.change(
debounced_update_graph,
inputs=[
db_dropdown,
tag_type_dropdown,
highlight_input,
node_dropdown,
depth_slider,
],
outputs=[graph_output, node_dropdown],
)
highlight_input.change(
update_node_dropdown,
inputs=[highlight_input],
outputs=[node_dropdown],
)
# node_dropdown.change(
# debounced_update_graph,
# inputs=[db_dropdown, tag_type_dropdown, highlight_input, node_dropdown, depth_slider],
# outputs=[graph_output, node_dropdown],
# )
# depth_slider.change(
# debounced_update_graph,
# inputs=[db_dropdown, tag_type_dropdown, highlight_input, node_dropdown, depth_slider],
# outputs=[graph_output, node_dropdown],
# )
update_graph_button.click(
debounced_update_graph,
inputs=[
db_dropdown,
tag_type_dropdown,
highlight_input,
node_dropdown,
depth_slider,
],
outputs=[graph_output, node_dropdown],
)
canned_query_dropdown.change(
update_selected_query,
inputs=[canned_query_dropdown],
outputs=[selected_query],
)
canned_query_submit.click(
submit_canned_query,
inputs=[canned_query_dropdown, limit_input, wrap_checkbox],
outputs=output,
)
sql_submit.click(
query_db,
inputs=[sql_input, gr.Checkbox(value=True), limit_input, wrap_checkbox],
outputs=output,
)
copy_button.click(
copy_as_markdown,
inputs=[output],
outputs=[gr.Textbox(label="Markdown Output", show_copy_button=True)],
)
download_button.click(
download_as_csv, inputs=[output], outputs=[gr.File(label="CSV Output")]
)
# nl_query_submit.click(nl_to_sql, inputs=[nl_query_input], outputs=[sql_input])
return demo
demo = create_demo()
def close_db():
global db
if db is not None:
db.close()
db = None
def launch():
print("Launching Gradio app...", flush=True)
shared_demo = demo.launch(share=True, prevent_thread_lock=True)
if isinstance(shared_demo, tuple):
if len(shared_demo) >= 2:
local_url, share_url = shared_demo[:2]
else:
local_url, share_url = shared_demo[0], "N/A"
else:
local_url = getattr(shared_demo, "local_url", "N/A")
share_url = getattr(shared_demo, "share_url", "N/A")
print(f"Local URL: {local_url}", flush=True)
print(f"Shareable link: {share_url}", flush=True)
print(
"Gradio app launched.",
flush=True,
)
# Keep the script running
demo.block_thread()
if __name__ == "__main__":
launch()
# Mount the Gradio app
# app = mount_gradio_app(app, demo, path="/")
# print(f"Shareable link: {demo.share_url}")
# @app.exception_handler(Exception)
# async def exception_handler(request: Request, exc: Exception):
# print(f"An error occurred: {str(exc)}")
# return {"error": str(exc)}
# @contextmanager
# def get_db_connection():
# global db
# conn = db.conn.cursor().connection
# try:
# yield conn
# finally:
# conn.close()
# @app.on_event("startup")
# async def startup_event():
# global db
# ROOT = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
# db_path = os.path.join(ROOT, DEFAULT_TABLES_DIR, get_available_databases()[0]) # Use the first available database
# db = ArxivDatabase(db_path)
# db.init_db()
# @app.on_event("shutdown")
# async def shutdown_event():
# if db is not None:
# db.close()
# if __name__ == "__main__":
# uvicorn.run(app, host="0.0.0.0", port=7860)