import gradio as gr import os import json import networkx as nx import pandas as pd import plotly.graph_objects as go import re import sys import sqlite3 import tempfile import time import uvicorn from contextlib import contextmanager from fastapi import FastAPI, Request from fastapi.middleware.cors import CORSMiddleware from gradio.routes import mount_gradio_app from plotly.subplots import make_subplots from tabulate import tabulate from typing import Optional ROOT_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) if ROOT_DIR not in sys.path: sys.path.insert(0, ROOT_DIR) from scripts.create_db import ArxivDatabase from config import ( DEFAULT_TABLES_DIR, DEFAULT_INTERFACE_MODEL_ID, COOCCURRENCE_QUERY, canned_queries, ) app = FastAPI() # Add CORS middleware app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) db: Optional[ArxivDatabase] = None last_update_time = 0 update_delay = 0.5 # Delay in seconds def truncate_or_wrap_text(text, max_length=50, wrap=False): """Truncate text to a maximum length, adding ellipsis if truncated, or wrap if specified.""" if wrap: return "\n".join( text[i : i + max_length] for i in range(0, len(text), max_length) ) return text[:max_length] + "..." if len(text) > max_length else text def format_url(url): """Format URL to be more compact in the table.""" return url.split("/")[-1] if url.startswith("http") else url def get_db_path(): """Get the database directory path based on environment""" # First try local path ROOT = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) tables_dir = os.path.join(ROOT, DEFAULT_TABLES_DIR) if not os.path.exists(tables_dir): # If running on Spaces, try the root directory tables_dir = os.path.join(ROOT, "data", "databases") if not os.path.exists(tables_dir): print(f"No database directory found") return None print(f"Using database directory: {tables_dir}") return tables_dir def get_available_databases(): """Get available databases from either local path or Hugging Face cache.""" tables_dir = get_db_path() if not tables_dir: return [] files = os.listdir(tables_dir) print(f"All files found: {files}") # Include all files except .md files databases = [f for f in files if not f.endswith(".md")] print(f"Database files: {databases}") return databases def query_db(query, is_sql, limit=None, wrap=False): global db if db is None: return pd.DataFrame({"Error": ["Please load a database first."]}) try: with sqlite3.connect(db.db_path) as conn: cursor = conn.cursor() query = " ".join(query.strip().split("\n")).rstrip(";") if limit is not None: if "LIMIT" in query.upper(): # Replace existing LIMIT clause query = re.sub( r"LIMIT\s+\d+", f"LIMIT {limit}", query, flags=re.IGNORECASE ) else: query += f" LIMIT {limit}" cursor.execute(query) column_names = [description[0] for description in cursor.description] results = cursor.fetchall() df = pd.DataFrame(results, columns=column_names) for column in df.columns: if df[column].dtype == "object": df[column] = df[column].apply( lambda x: ( format_url(x) if column == "url" else truncate_or_wrap_text(x, wrap=wrap) ) ) return df except sqlite3.Error as e: return pd.DataFrame({"Error": [f"Database error: {str(e)}"]}) except Exception as e: return pd.DataFrame({"Error": [f"An unexpected error occurred: {str(e)}"]}) def generate_concept_cooccurrence_graph(db_path, tag_type=None): conn = sqlite3.connect(db_path) query = COOCCURRENCE_QUERY if tag_type and tag_type != "All": query = query.replace( "WHERE p1.tag_type = p2.tag_type", f"WHERE p1.tag_type = p2.tag_type AND p1.tag_type = '{tag_type}'", ) df = pd.read_sql_query(query, conn) conn.close() G = nx.from_pandas_edgelist(df, "concept1", "concept2", "co_occurrences") pos = nx.spring_layout(G, k=0.5, iterations=50) edge_trace = go.Scatter( x=[], y=[], line=dict(width=0.5, color="#888"), hoverinfo="none", mode="lines" ) node_trace = go.Scatter( x=[], y=[], mode="markers", hoverinfo="text", marker=dict( showscale=True, colorscale="YlGnBu", size=10, colorbar=dict( thickness=15, title="Node Connections", xanchor="left", titleside="right", ), ), ) def update_traces(selected_node=None, depth=0): nonlocal edge_trace, node_trace if selected_node and depth > 0: nodes_to_show = set([selected_node]) frontier = set([selected_node]) for _ in range(depth): new_frontier = set() for node in frontier: new_frontier.update(G.neighbors(node)) nodes_to_show.update(new_frontier) frontier = new_frontier sub_G = G.subgraph(nodes_to_show) else: sub_G = G edge_x, edge_y = [], [] for edge in sub_G.edges(): x0, y0 = pos[edge[0]] x1, y1 = pos[edge[1]] edge_x.extend([x0, x1, None]) edge_y.extend([y0, y1, None]) edge_trace.x = edge_x edge_trace.y = edge_y node_x, node_y = [], [] for node in sub_G.nodes(): x, y = pos[node] node_x.append(x) node_y.append(y) node_trace.x = node_x node_trace.y = node_y node_adjacencies = [] node_text = [] for node in sub_G.nodes(): adjacencies = list(G.adj[node]) node_adjacencies.append(len(adjacencies)) node_text.append(f"{node}
# of connections: {len(adjacencies)}") node_trace.marker.color = node_adjacencies node_trace.text = node_text update_traces() fig = go.Figure( data=[edge_trace, node_trace], layout=go.Layout( title=f'Concept Co-occurrence Network {f"({tag_type})" if tag_type and tag_type != "All" else ""}', titlefont_size=16, showlegend=False, hovermode="closest", margin=dict(b=20, l=5, r=5, t=40), annotations=[ dict( text="", showarrow=False, xref="paper", yref="paper", x=0.005, y=-0.002, ) ], xaxis=dict(showgrid=False, zeroline=False, showticklabels=False), yaxis=dict(showgrid=False, zeroline=False, showticklabels=False), ), ) fig.update_layout( updatemenus=[ dict( type="buttons", direction="left", buttons=[ dict( args=[{"visible": [True, True]}], label="Full Graph", method="update", ), dict( args=[ { "visible": [True, True], "xaxis.range": [-1, 1], "yaxis.range": [-1, 1], } ], label="Core View", method="relayout", ), dict( args=[ { "visible": [True, True], "xaxis.range": [-0.2, 0.2], "yaxis.range": [-0.2, 0.2], } ], label="Detailed View", method="relayout", ), ], pad={"r": 10, "t": 10}, showactive=True, x=0.11, xanchor="left", y=1.1, yanchor="top", ), ] ) return fig, G, pos, update_traces def load_database_with_graphs(db_name): """Load database from either local path or Hugging Face cache.""" global db tables_dir = get_db_path() if not tables_dir: return f"No database directory found.", None db_path = os.path.join(tables_dir, db_name) if not os.path.exists(db_path): return f"Database {db_name} does not exist.", None db = ArxivDatabase(db_path) db.init_db() if db.is_db_empty: return ( f"Database loaded from {db_path}, but it is empty. Please populate it with data.", None, ) graph, _, _, _ = generate_concept_cooccurrence_graph(db_path) return f"Database loaded from {db_path}", graph css = """ #selected-query { max-height: 100px; overflow-y: auto; white-space: pre-wrap; word-break: break-word; } """ def create_demo(): with gr.Blocks() as demo: gr.Markdown("# ArXiv Database Query Interface") with gr.Row(): db_dropdown = gr.Dropdown( choices=get_available_databases(), label="Select Database", value=get_available_databases(), ) # load_db_btn = gr.Button("Load Database", size="sm") status = gr.Textbox(label="Status") with gr.Row(): graph_output = gr.Plot(label="Concept Co-occurrence Graph") with gr.Row(): tag_type_dropdown = gr.Dropdown( choices=[ "All", "model", "task", "dataset", "field", "modality", "method", "object", "property", "instrument", ], label="Select Tag Type", value="All", ) highlight_input = gr.Textbox(label="Highlight Concepts (comma-separated)") with gr.Row(): node_dropdown = gr.Dropdown(label="Select Node", choices=[]) depth_slider = gr.Slider( minimum=0, maximum=5, step=1, value=0, label="Connection Depth" ) update_graph_button = gr.Button("Update Graph") with gr.Row(): wrap_checkbox = gr.Checkbox(label="Wrap long text", value=False) canned_query_dropdown = gr.Dropdown( choices=[q[0] for q in canned_queries], label="Select Query", scale=3 ) limit_input = gr.Number( label="Limit", value=10000, step=1, minimum=1, scale=1 ) selected_query = gr.Textbox( label="Selected Query", interactive=False, scale=2, show_label=True, show_copy_button=True, elem_id="selected-query", ) canned_query_submit = gr.Button("Submit Query", size="sm", scale=1) with gr.Row(): sql_input = gr.Textbox(label="Custom SQL Query", lines=3, scale=4) sql_submit = gr.Button("Submit Custom SQL", size="sm", scale=1) # with gr.Row(): # nl_query_input = gr.Textbox( # label="Natural Language Query", lines=2, scale=4 # ) # nl_query_submit = gr.Button("Convert to SQL", size="sm", scale=1) output = gr.DataFrame(label="Results", wrap=True) with gr.Row(): copy_button = gr.Button("Copy as Markdown") download_button = gr.Button("Download as CSV") def debounced_update_graph( db_name, tag_type, highlight_concepts, selected_node, depth ): global last_update_time current_time = time.time() if current_time - last_update_time < update_delay: return None, [] # Return early if not enough time has passed last_update_time = current_time if not db_name: return None, [] ROOT = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) db_path = os.path.join(ROOT, DEFAULT_TABLES_DIR, db_name) fig, G, pos, update_traces = generate_concept_cooccurrence_graph( db_path, tag_type ) if isinstance(selected_node, list): selected_node = selected_node[0] if selected_node else None highlight_nodes = ( [node.strip() for node in highlight_concepts.split(",")] if highlight_concepts else [] ) primary_node = highlight_nodes[0] if highlight_nodes else None if primary_node and primary_node in G.nodes(): # Apply node selection and depth filter nodes_to_show = set([primary_node]) if depth > 0: frontier = set([primary_node]) for _ in range(depth): new_frontier = set() for node in frontier: new_frontier.update(G.neighbors(node)) nodes_to_show.update(new_frontier) frontier = new_frontier sub_G = G.subgraph(nodes_to_show) # Update traces with the filtered graph edge_x, edge_y = [], [] for edge in sub_G.edges(): x0, y0 = pos[edge[0]] x1, y1 = pos[edge[1]] edge_x.extend([x0, x1, None]) edge_y.extend([y0, y1, None]) fig.data[0].x = edge_x fig.data[0].y = edge_y node_x, node_y = [], [] for node in sub_G.nodes(): x, y = pos[node] node_x.append(x) node_y.append(y) fig.data[1].x = node_x fig.data[1].y = node_y # Color nodes based on their distance from the primary node and highlight status node_colors = [] node_sizes = [] for node in sub_G.nodes(): if node in highlight_nodes: node_colors.append( "rgba(255,0,0,1)" ) # Red for highlighted nodes node_sizes.append(15) else: distance = nx.shortest_path_length( sub_G, source=primary_node, target=node ) intensity = max(0, 1 - (distance / (depth + 1))) node_colors.append(f"rgba(0,0,255,{intensity})") node_sizes.append(10) fig.data[1].marker.color = node_colors fig.data[1].marker.size = node_sizes # Update node text node_text = [ f"{node}
# of connections: {len(list(G.neighbors(node)))}" for node in sub_G.nodes() ] fig.data[1].text = node_text # Get connected nodes for dropdown connected_nodes = sorted(list(G.neighbors(primary_node))) else: # If no primary node or it's not in the graph, show the full graph connected_nodes = sorted(list(G.nodes())) return fig, connected_nodes def update_node_dropdown(highlight_concepts): if not highlight_concepts or not db: return gr.Dropdown(choices=[]) ROOT = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) db_path = os.path.join(ROOT, DEFAULT_TABLES_DIR, db.db_path) _, G, _, _ = generate_concept_cooccurrence_graph(db_path) primary_node = highlight_concepts.split(",")[0].strip() if primary_node in G.nodes(): connected_nodes = sorted(list(G.neighbors(primary_node))) return gr.Dropdown(choices=connected_nodes) else: return gr.Dropdown(choices=[]) def update_selected_query(query_description): for desc, sql in canned_queries: if desc == query_description: return sql return "" def submit_canned_query(query_description, limit, wrap): for desc, sql in canned_queries: if desc == query_description: return query_db(sql, True, limit, wrap) return pd.DataFrame({"Error": ["Selected query not found."]}) def copy_as_markdown(df): return df.to_markdown() def download_as_csv(df): if df is None or df.empty: return None with tempfile.NamedTemporaryFile( mode="w", delete=False, suffix=".csv" ) as temp_file: df.to_csv(temp_file.name, index=False) temp_file_path = temp_file.name return temp_file_path # def nl_to_sql(nl_query): # # Placeholder function for natural language to SQL conversion # return f"SELECT * FROM papers WHERE abstract LIKE '%{nl_query}%' LIMIT 10;" db_dropdown.change( load_database_with_graphs, inputs=[db_dropdown], outputs=[status, graph_output], ) # db_dropdown.change( # debounced_update_graph, # inputs=[db_dropdown, tag_type_dropdown, highlight_input, node_dropdown, depth_slider], # outputs=[graph_output, node_dropdown], # ) tag_type_dropdown.change( debounced_update_graph, inputs=[ db_dropdown, tag_type_dropdown, highlight_input, node_dropdown, depth_slider, ], outputs=[graph_output, node_dropdown], ) highlight_input.change( update_node_dropdown, inputs=[highlight_input], outputs=[node_dropdown], ) # node_dropdown.change( # debounced_update_graph, # inputs=[db_dropdown, tag_type_dropdown, highlight_input, node_dropdown, depth_slider], # outputs=[graph_output, node_dropdown], # ) # depth_slider.change( # debounced_update_graph, # inputs=[db_dropdown, tag_type_dropdown, highlight_input, node_dropdown, depth_slider], # outputs=[graph_output, node_dropdown], # ) update_graph_button.click( debounced_update_graph, inputs=[ db_dropdown, tag_type_dropdown, highlight_input, node_dropdown, depth_slider, ], outputs=[graph_output, node_dropdown], ) canned_query_dropdown.change( update_selected_query, inputs=[canned_query_dropdown], outputs=[selected_query], ) canned_query_submit.click( submit_canned_query, inputs=[canned_query_dropdown, limit_input, wrap_checkbox], outputs=output, ) sql_submit.click( query_db, inputs=[sql_input, gr.Checkbox(value=True), limit_input, wrap_checkbox], outputs=output, ) copy_button.click( copy_as_markdown, inputs=[output], outputs=[gr.Textbox(label="Markdown Output", show_copy_button=True)], ) download_button.click( download_as_csv, inputs=[output], outputs=[gr.File(label="CSV Output")] ) # nl_query_submit.click(nl_to_sql, inputs=[nl_query_input], outputs=[sql_input]) return demo demo = create_demo() def close_db(): global db if db is not None: db.close() db = None def launch(): print("Launching Gradio app...", flush=True) shared_demo = demo.launch(share=True, prevent_thread_lock=True) if isinstance(shared_demo, tuple): if len(shared_demo) >= 2: local_url, share_url = shared_demo[:2] else: local_url, share_url = shared_demo[0], "N/A" else: local_url = getattr(shared_demo, "local_url", "N/A") share_url = getattr(shared_demo, "share_url", "N/A") print(f"Local URL: {local_url}", flush=True) print(f"Shareable link: {share_url}", flush=True) print( "Gradio app launched.", flush=True, ) # Keep the script running demo.block_thread() if __name__ == "__main__": launch() # Mount the Gradio app # app = mount_gradio_app(app, demo, path="/") # print(f"Shareable link: {demo.share_url}") # @app.exception_handler(Exception) # async def exception_handler(request: Request, exc: Exception): # print(f"An error occurred: {str(exc)}") # return {"error": str(exc)} # @contextmanager # def get_db_connection(): # global db # conn = db.conn.cursor().connection # try: # yield conn # finally: # conn.close() # @app.on_event("startup") # async def startup_event(): # global db # ROOT = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) # db_path = os.path.join(ROOT, DEFAULT_TABLES_DIR, get_available_databases()[0]) # Use the first available database # db = ArxivDatabase(db_path) # db.init_db() # @app.on_event("shutdown") # async def shutdown_event(): # if db is not None: # db.close() # if __name__ == "__main__": # uvicorn.run(app, host="0.0.0.0", port=7860)