Spaces:
Running
Running
File size: 2,361 Bytes
cb7b970 927116b cb7b970 927116b cb7b970 72ad303 927116b a390b9a cb7b970 927116b 72ad303 cb7b970 a390b9a cb7b970 a390b9a cb7b970 927116b cb7b970 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
# 加载模型
model_name = "deepseek-ai/deepseek-coder-1.3b-base" # 可替换为 "deepseek-ai/deepseek-coder-1.3b-instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16, # 使用 FP16 减少内存
device_map="cpu", # 强制 CPU
trust_remote_code=True,
low_cpu_mem_usage=True
)
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
# 使用聊天模板格式化输入(base 模型可能无模板,需调整)
try:
input_text = tokenizer.apply_chat_template(messages, tokenize=False)
except:
# 如果 base 模型无聊天模板,直接拼接
input_text = "\n".join([f"{msg['role']}: {msg['content']}" for msg in messages])
inputs = tokenizer(input_text, return_tensors="pt").to("cpu")
# 生成响应
outputs = model.generate(
**inputs,
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
yield response
# Gradio 界面
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly coding assistant.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=256, step=1, label="Max new tokens"), # 降低以加快 CPU 推理
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch() |