import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer import torch # 加载DeepSeek-Coder-6.7B模型 model_name = "deepseek/DeepSeek-Coder-6.7B" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.float16, # 使用半精度以减少显存 device_map="auto", # 自动分配到GPU trust_remote_code=True # DeepSeek模型可能需要 ) def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) # 格式化输入 input_text = tokenizer.apply_chat_template(messages, tokenize=False) inputs = tokenizer(input_text, return_tensors="pt").to("cuda") # 生成响应 outputs = model.generate( **inputs, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p, do_sample=True, ) response = tokenizer.decode(outputs[0], skip_special_tokens=True) yield response # Gradio界面 demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly coding assistant.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()