import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer import torch # 加载模型 model_name = "deepseek-ai/deepseek-coder-1.3b-base" # 可替换为 "deepseek-ai/deepseek-coder-1.3b-instruct" tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.float16, # 使用 FP16 减少内存 device_map="cpu", # 强制 CPU trust_remote_code=True, low_cpu_mem_usage=True ) def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) # 使用聊天模板格式化输入(base 模型可能无模板,需调整) try: input_text = tokenizer.apply_chat_template(messages, tokenize=False) except: # 如果 base 模型无聊天模板,直接拼接 input_text = "\n".join([f"{msg['role']}: {msg['content']}" for msg in messages]) inputs = tokenizer(input_text, return_tensors="pt").to("cpu") # 生成响应 outputs = model.generate( **inputs, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p, do_sample=True, pad_token_id=tokenizer.eos_token_id ) response = tokenizer.decode(outputs[0], skip_special_tokens=True) yield response # Gradio 界面 demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly coding assistant.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=256, step=1, label="Max new tokens"), # 降低以加快 CPU 推理 gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()