app.py
ADDED
@@ -0,0 +1,294 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from gotLibrary import GotLib
|
3 |
+
import plotly.express as px
|
4 |
+
import pandas as pd
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
|
7 |
+
class plot_type:
|
8 |
+
def __init__(self,data):
|
9 |
+
self.data = data
|
10 |
+
self.fig=None
|
11 |
+
self.update_layout=None
|
12 |
+
|
13 |
+
def bar(self,x,y,color):
|
14 |
+
self.fig=px.bar(self.data,x=x,y=y,color=color)
|
15 |
+
|
16 |
+
def pie(self,x,y):
|
17 |
+
self.fig = px.pie(self.data,values=x,names=y)
|
18 |
+
|
19 |
+
|
20 |
+
def set_title(self,title):
|
21 |
+
|
22 |
+
self.fig.update_layout(
|
23 |
+
title=f"{title}",
|
24 |
+
yaxis=dict(tickmode="linear"),
|
25 |
+
paper_bgcolor='rgba(0,0,0,0)',
|
26 |
+
plot_bgcolor='rgba(0,0,0,0)',
|
27 |
+
font=dict(color='white',size=18))
|
28 |
+
|
29 |
+
def set_title_x(self,title):
|
30 |
+
|
31 |
+
self.fig.update_layout(
|
32 |
+
title=f"{title}",
|
33 |
+
xaxis=dict(tickmode="linear"),
|
34 |
+
paper_bgcolor='rgba(0,0,0,0)',
|
35 |
+
plot_bgcolor='rgba(0,0,0,0)',
|
36 |
+
font=dict(color='white',size=18))
|
37 |
+
|
38 |
+
def set_title_pie(self,title):
|
39 |
+
self.fig.update_layout(title=title,
|
40 |
+
paper_bgcolor='rgba(0,0,0,0)',
|
41 |
+
plot_bgcolor='rgba(0,0,0,0)',
|
42 |
+
font=dict(color='white',size=18))
|
43 |
+
|
44 |
+
|
45 |
+
|
46 |
+
def plot(self):
|
47 |
+
st.write(self.fig)
|
48 |
+
|
49 |
+
class slide_bar:
|
50 |
+
value=4
|
51 |
+
def __init__(self,title,x,y):
|
52 |
+
self.title = title
|
53 |
+
self.x=x
|
54 |
+
self.y=y
|
55 |
+
self.slide_bar = None
|
56 |
+
|
57 |
+
|
58 |
+
def set(self):
|
59 |
+
self.slide_bar = st.slider(self.title,self.x,self.y)
|
60 |
+
slide_bar.value=self.slide_bar
|
61 |
+
|
62 |
+
class select_box:
|
63 |
+
value="tyrion"
|
64 |
+
def __init__(self,data):
|
65 |
+
self.data=data
|
66 |
+
self.box=None
|
67 |
+
def place(self,title,key):
|
68 |
+
header(title)
|
69 |
+
self.box = st.selectbox(str(key),self.data)
|
70 |
+
select_box.value=self.box
|
71 |
+
|
72 |
+
def title(text,size,color):
|
73 |
+
st.markdown(f'<h1 style="font-weight:bolder;font-size:{size}px;color:{color};text-align:center;">{text}</h1>',unsafe_allow_html=True)
|
74 |
+
|
75 |
+
def header(text):
|
76 |
+
st.markdown(f"<p style='color:white;'>{text}</p>",unsafe_allow_html=True)
|
77 |
+
|
78 |
+
|
79 |
+
|
80 |
+
|
81 |
+
@st.cache(persist=True,suppress_st_warning=True)
|
82 |
+
def load_data():
|
83 |
+
df = pd.read_csv('final_data.csv')
|
84 |
+
df = df.iloc[:,1:]
|
85 |
+
return df
|
86 |
+
|
87 |
+
#loading the data
|
88 |
+
df = load_data()
|
89 |
+
|
90 |
+
#intializing the GotLib object
|
91 |
+
got = GotLib(df)
|
92 |
+
|
93 |
+
|
94 |
+
|
95 |
+
with open("styles/style.css") as f:
|
96 |
+
st.markdown(f'<style>{f.read()}</style>',unsafe_allow_html=True)
|
97 |
+
|
98 |
+
|
99 |
+
#-------------------------------Header-----------------------
|
100 |
+
|
101 |
+
st.markdown('<h1 style="text-align:center;color:white;font-weight:bolder;font-size:100px;">GAME<br>OF<br>THRONES</h1>',unsafe_allow_html=True)
|
102 |
+
# st.markdown('<h1 style="text-align:center;color:white;background-image:url("m1.png");">An analysis..</h1>',unsafe_allow_html=True)
|
103 |
+
st.markdown('<h2 style="text-align:center;color:white;">An analysis..</h2>',unsafe_allow_html=True)
|
104 |
+
st.image('images/got1.jpg',width=700)
|
105 |
+
st.markdown('### This is an analysis based project on the tv series game of thrones')
|
106 |
+
|
107 |
+
|
108 |
+
|
109 |
+
#------------------------Module 1--------------------------
|
110 |
+
title("Top characters based on number of words spoken in a season",60,"white")
|
111 |
+
|
112 |
+
header('season')
|
113 |
+
|
114 |
+
option_1_s = st.selectbox('',[1,2,3,4,5,6,7,8])
|
115 |
+
|
116 |
+
header("number of results")
|
117 |
+
num = st.slider("",4,50)
|
118 |
+
|
119 |
+
temp_data = got.show_top_by_season(option_1_s)
|
120 |
+
number=10
|
121 |
+
|
122 |
+
bar1 = plot_type(temp_data[-num:])
|
123 |
+
bar1.bar("spoken_words","character","spoken_words")
|
124 |
+
bar1.set_title(f"Season {option_1_s}")
|
125 |
+
bar1.plot()
|
126 |
+
|
127 |
+
|
128 |
+
#-----------------------Module 2------------------------------
|
129 |
+
|
130 |
+
title("Overall top characters based on number of spoken words",60,'white')
|
131 |
+
|
132 |
+
header("number of results")
|
133 |
+
|
134 |
+
num1 = st.slider("",5,60)
|
135 |
+
|
136 |
+
temp_data1 = got.get_overall_top()
|
137 |
+
|
138 |
+
bar2 = plot_type(temp_data1[-num1:])
|
139 |
+
bar2.bar("words","character","words")
|
140 |
+
bar2.set_title("Overall Top")
|
141 |
+
bar2.plot()
|
142 |
+
|
143 |
+
#------------------------Module 3-----------------------------
|
144 |
+
|
145 |
+
title("Character's number of dialogues over the seasons",60,"white")
|
146 |
+
st.markdown('### NOTE: displaying only top 100 characters in drop downs as there are more than 500+ it would be awkward to display it all :)')
|
147 |
+
|
148 |
+
characters = got.get_data_seasons()
|
149 |
+
stb1 = select_box(characters)
|
150 |
+
stb1.place("character",0)
|
151 |
+
@st.cache(persist=True)
|
152 |
+
def sbyc(df,stb1):
|
153 |
+
return got.show_bar_by_character_allSeason(stb1)
|
154 |
+
|
155 |
+
t_data = sbyc(df,stb1.value)
|
156 |
+
|
157 |
+
bar0 = plot_type(t_data)
|
158 |
+
bar0.bar("season","spoken_words","spoken_words")
|
159 |
+
# bar0.update_layout(title=f"{stbl.value}")
|
160 |
+
bar0.set_title_x(stb1.value)
|
161 |
+
|
162 |
+
bar0.plot()
|
163 |
+
|
164 |
+
#----------------------Module 4----------------------------------
|
165 |
+
|
166 |
+
title("Percentage of a character's performance in seasons",60,"white")
|
167 |
+
st.write("what is the character's distribution of his/her/(uhh. you know the rest) dialogue percentage over the seasons")
|
168 |
+
|
169 |
+
stb2 = select_box(characters)
|
170 |
+
stb2.place("character",9)
|
171 |
+
t_data1 = got.cal_importance(df,stb2.value)
|
172 |
+
|
173 |
+
pie2 = plot_type(t_data1)
|
174 |
+
pie2.pie("imp","season")
|
175 |
+
pie2.set_title_pie(stb2.value)
|
176 |
+
pie2.plot()
|
177 |
+
|
178 |
+
|
179 |
+
#-------------------------Module 5-----------------------------
|
180 |
+
|
181 |
+
title('Most number of words spoken by a character',60,'white')
|
182 |
+
st.markdown('#### removing all the stop words in the sense common words.')
|
183 |
+
|
184 |
+
|
185 |
+
|
186 |
+
select_box1 = select_box(characters)
|
187 |
+
select_box1.place('character',1)
|
188 |
+
header("range")
|
189 |
+
num2 = slide_bar("",5,55)
|
190 |
+
num2.set()
|
191 |
+
temp_data2,size = got.get_most_spokenwords_by_character(df,select_box1.value,num2.value)
|
192 |
+
|
193 |
+
|
194 |
+
bar3 = plot_type(temp_data2)
|
195 |
+
bar3.bar("frequency","words","frequency")
|
196 |
+
bar3.set_title(f"{select_box1.value.capitalize()} total words spoken - {size}")
|
197 |
+
bar3.plot()
|
198 |
+
|
199 |
+
#--------------------------WORD_CLOUD---------------------------
|
200 |
+
|
201 |
+
title("WordCloud of a character",60,'white')
|
202 |
+
st.markdown('#### It may take a few seconds to load the result, so please hold on to your dragons.')
|
203 |
+
|
204 |
+
select_box2 = select_box(characters)
|
205 |
+
select_box2.place('character',2)
|
206 |
+
|
207 |
+
header('range')
|
208 |
+
sl = slide_bar('',50,200)
|
209 |
+
sl.set()
|
210 |
+
@st.cache(persist=True,suppress_st_warning=True)
|
211 |
+
def swc(df,v1,v2):
|
212 |
+
return got.show_word_cloud(df,v1,v2)
|
213 |
+
wc = swc(df,sl.value,select_box2.value)
|
214 |
+
fig = plt.figure(figsize=(8,8))
|
215 |
+
plt.imshow(wc,interpolation="bilinear")
|
216 |
+
plt.axis('off')
|
217 |
+
plt.title(select_box2.value,fontsize=18)
|
218 |
+
plt.tight_layout()
|
219 |
+
st.pyplot(fig)
|
220 |
+
|
221 |
+
#--------------------------Module 4------------------------------
|
222 |
+
|
223 |
+
title("Emotional characteristics",70,"white")
|
224 |
+
st.write("The below pie chart depicts the distribution of emotions of a character.")
|
225 |
+
st.write('Note: This is purely my calculations based on the text-corpus I created and also based on the words used by a character.')
|
226 |
+
|
227 |
+
select_box3 = select_box(characters)
|
228 |
+
select_box3.place('character',3)
|
229 |
+
|
230 |
+
temp_data3 = got.cal_character(select_box3.value)
|
231 |
+
pie1 = plot_type(temp_data3['data'])
|
232 |
+
pie1.pie(temp_data3['y'],temp_data3['x'])
|
233 |
+
pie1.set_title_pie(select_box3.value)
|
234 |
+
pie1.plot()
|
235 |
+
|
236 |
+
#---------------------------Module 5--------------------------
|
237 |
+
title("Most used name by a character",50,"white")
|
238 |
+
|
239 |
+
stb = select_box(characters[:50])
|
240 |
+
stb.place("character",4)
|
241 |
+
temp_df = got.most_name(stb.value)
|
242 |
+
num_range = temp_df.shape[0]
|
243 |
+
rangesl = slide_bar("",1,num_range)
|
244 |
+
rangesl.set()
|
245 |
+
|
246 |
+
bar5 = plot_type(temp_df.iloc[-rangesl.value:,:])
|
247 |
+
bar5.bar("number","name","number")
|
248 |
+
bar5.set_title(stb.value)
|
249 |
+
bar5.plot()
|
250 |
+
|
251 |
+
|
252 |
+
|
253 |
+
#----------------------Module 6----------------------------------
|
254 |
+
|
255 |
+
title('Similar Characters',60,'white')
|
256 |
+
st.write('The chart shows characters who are similar to a character with their similarity precentage, based on their similar usage of words, this same alogrithm is also used in movie recommender systems.')
|
257 |
+
st.write('Note: This is very much experimental and purely based on the scripts. And only depends on script text and nothing else.')
|
258 |
+
ch=characters[:]
|
259 |
+
ch1 = select_box(ch)
|
260 |
+
ch1.place('character',5)
|
261 |
+
val=ch1.value
|
262 |
+
|
263 |
+
|
264 |
+
results = got.get_similar_character(val)
|
265 |
+
|
266 |
+
colors = ['rgb(0,255,42)','rgb(221, 235, 30)','rgb(224, 91, 43)']
|
267 |
+
char = list(results['character'])
|
268 |
+
score = list(results['similarity'])
|
269 |
+
i=0
|
270 |
+
for name,sc in zip(char,score):
|
271 |
+
|
272 |
+
st.markdown(f"<h3 style='text-align:center;color:rgb(196, 196, 196);'><span style='font-weight:bolder;color:{colors[i]};font-size:50px;'>{name} </span> [{sc}%]</h3>",unsafe_allow_html=True)
|
273 |
+
i+=1
|
274 |
+
|
275 |
+
|
276 |
+
#----------------------------------------------------------------------THE END---------------------------------------------------------------------
|
277 |
+
|
278 |
+
st.write(' ')
|
279 |
+
|
280 |
+
st.markdown('#### The dataset here is created from the scripts, involved a lot of data cleaning,wrangling and pre-processing!. Took a lot of time to prepare it!. And is 85% accurate.')
|
281 |
+
|
282 |
+
st.write('check the box below to peak at the dataset')
|
283 |
+
if st.checkbox('',False):
|
284 |
+
st.subheader("Game_of_Thrones")
|
285 |
+
st.write(df)
|
286 |
+
|
287 |
+
st.write('')
|
288 |
+
st.write('')
|
289 |
+
|
290 |
+
|
291 |
+
st.markdown('<h3 style="text-align:center;">Made By <span style="color:#4f9bce;font-weight:bolder;font-size:40px;">Mario 😎</span></h3>',unsafe_allow_html=True)
|
292 |
+
st.markdown('<h2 style="text-align:center;text-decoration:none;font-weight:bolder;"><a style="text-decoration:none;color:rgb(96, 235, 133);" href="https://github.com/Mario-Vishal">-> GitHub <-</a></h2>',unsafe_allow_html=True)
|
293 |
+
st.markdown('<h2 style="text-align:center;text-decoration:none;font-weight:bolder;"><a style="text-decoration:none;color:rgb(20, 166, 219);" href="https://www.linkedin.com/in/mario-vishal">-> Linkedin <-</a></h2>',unsafe_allow_html=True)
|
294 |
+
st.markdown('<h2 style="text-align:center;text-decoration:none;font-weight:bolder;"><a style="text-decoration:none;color:red;" href="mailto:[email protected]">-> Contact Me <-</a></h2>',unsafe_allow_html=True)
|