File size: 9,870 Bytes
77e4338 3726761 77e4338 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
import gradio as gr
import sqlite3
import html
import re
import unicodedata
from typing import List, Dict
def normalize_text(text: str, language: str) -> str:
"""Normalize text based on language rules."""
if not text:
return text
# Convert to lowercase and normalize Unicode
text = text.lower()
text = unicodedata.normalize('NFKD', text)
if language == "Arabic":
# Normalize Arabic alifs and remove diacritics
text = re.sub(r'[إأآا]', 'ا', text) # Normalize alifs
text = re.sub(r'[ىي]', 'ي', text) # Normalize ya
text = re.sub(r'[ةه]', 'ه', text) # Normalize ta marbuta and ha
# Remove Arabic diacritics (fatha, kasra, damma, etc.)
text = re.sub(r'[\u064B-\u065F\u0670]', '', text)
elif language == "French":
# Remove French diacritics by replacing accented characters with base characters
text = ''.join(c for c in unicodedata.normalize('NFD', text)
if not unicodedata.combining(c))
elif language == "Amazigh":
# Normalize Amazigh characters
text = text.replace('ⵕ', 'ⵔ') # Treat ⵕ the same as ⵔ
text = text.replace('ⵯ', '') # Make character ⵯ unnecessary
return text
def search_dictionary(search_term: str,
language: str,
exact_match: bool,
word_match: bool,
contains: bool,
starts_with: bool,
ends_with: bool) -> str:
if not search_term or search_term.isspace():
return "<p>Please enter a search term</p>"
conn = sqlite3.connect('asawal_amqran.db')
cursor = conn.cursor()
# Normalize search term according to language-specific rules
normalized_search = normalize_text(search_term, language)
search_columns = {
"Amazigh": ["word", "latin", "construct", "plural", "acc", "accneg", "inacc",
"variante", "feminine", "fem_construct", "fem_plural",
"fem_plural_construct", "exp_zgh"],
"Arabic": ["arabic", "exp_ara", "mean_ar"],
"French": ["french", "exp_fra"]
}.get(language, [])
if not search_columns:
return "<p>Please select a language</p>"
if not any([exact_match, word_match, contains, starts_with, ends_with]):
return "<p>Please select at least one search option</p>"
# Dictionary source priority mapping (lower number = higher priority)
source_priority = {
"IRCAM (DGLAi)": 1,
"Msmun": 2,
"Tawalt (Arabic)": 3,
"Tawalt (French)": 4
}
priority_results = []
seen_word_ids = set()
# Get all data and filter in Python to handle normalization properly
cursor.execute("SELECT * FROM lexie")
column_names = [desc[0] for desc in cursor.description]
word_id_idx = column_names.index('word_id') if 'word_id' in column_names else -1
source_idx = column_names.index('source') if 'source' in column_names else -1
all_rows = cursor.fetchall()
for row in all_rows:
if word_id_idx == -1 or row[word_id_idx] in seen_word_ids:
continue
# Get the source priority (default to lowest priority if source not found)
source_value = row[source_idx] if source_idx >= 0 else None
source_priority_value = source_priority.get(source_value, 999)
# Check each relevant column with normalization
for column_idx, column_name in enumerate(column_names):
if column_name not in search_columns:
continue
cell_value = row[column_idx]
if not cell_value:
continue
# Normalize the cell value according to language rules
normalized_cell = normalize_text(str(cell_value), language)
# Priority based on match type (1-5) and source priority (subpriority)
# Priority 1: Exact Match
if exact_match and normalized_cell == normalized_search:
seen_word_ids.add(row[word_id_idx])
# Use source priority as subpriority (1.001, 1.002, etc.)
priority_results.append((1 + source_priority_value/1000, row))
break
# Priority 2: Word Match
elif word_match and (normalized_cell == normalized_search or
re.search(r'\b' + re.escape(normalized_search) + r'\b', normalized_cell)):
seen_word_ids.add(row[word_id_idx])
priority_results.append((2 + source_priority_value/1000, row))
break
# Priority 3: Contains
elif contains and normalized_search in normalized_cell:
seen_word_ids.add(row[word_id_idx])
priority_results.append((3 + source_priority_value/1000, row))
break
# Priority 4: Starts With
elif starts_with and normalized_cell.startswith(normalized_search):
seen_word_ids.add(row[word_id_idx])
priority_results.append((4 + source_priority_value/1000, row))
break
# Priority 5: Ends With
elif ends_with and normalized_cell.endswith(normalized_search):
seen_word_ids.add(row[word_id_idx])
priority_results.append((5 + source_priority_value/1000, row))
break
conn.close()
if not priority_results:
return "<p>No results found</p>"
# Sort by priority
priority_results.sort(key=lambda x: x[0])
results = [row for priority, row in priority_results]
# Format results as HTML
html_output = "<div style='font-family: Arial, sans-serif;'>"
if column_names:
for result in results:
result_dict = dict(zip(column_names, result))
html_output += "<div style='border: 1px solid #ccc; margin: 10px; padding: 15px; position: relative;'>"
if 'source' in result_dict and result_dict['source']:
html_output += f"<div style='text-align: center; font-style: italic;'>{html.escape(str(result_dict['source']))}</div>"
if 'category' in result_dict and result_dict['category']:
html_output += f"<div style='position: absolute; top: 10px; right: 10px; font-weight: bold;'>{html.escape(str(result_dict['category']))}</div>"
html_output += "<h3>Word</h3><ul>"
for field, label in [
('word', 'Word'), ('latin', 'Latin'), ('construct', 'Construct'),
('plural', 'Plural'), ('acc', 'Accusative'), ('accneg', 'Negative Accusative'),
('inacc', 'Inaccusative'), ('variante', 'Variant'), ('feminine', 'Feminine'),
('fem_construct', 'Feminine Construct'), ('fem_plural', 'Feminine Plural'),
('fem_plural_construct', 'Feminine Plural Construct')
]:
if field in result_dict and result_dict[field]:
html_output += f"<li><strong>{label}:</strong> {html.escape(str(result_dict[field]))}</li>"
html_output += "</ul>"
html_output += "<h3>Translations</h3><ul>"
if 'french' in result_dict and result_dict['french']:
html_output += f"<li><strong>French:</strong> {html.escape(str(result_dict['french']))}</li>"
if 'arabic' in result_dict and result_dict['arabic']:
html_output += f"<li><strong>Arabic:</strong> {html.escape(str(result_dict['arabic']))}</li>"
if 'mean_ar' in result_dict and result_dict['mean_ar']:
html_output += f"<li><strong>Arabic Meaning:</strong> {html.escape(str(result_dict['mean_ar']))}</li>"
html_output += "</ul>"
html_output += "<h3>Expressions</h3><ul>"
for field, label in [
('exp_zgh', 'Amazigh Expression'), ('exp_fra', 'French Expression'),
('exp_ara', 'Arabic Expression')
]:
if field in result_dict and result_dict[field]:
html_output += f"<li><strong>{label}:</strong> {html.escape(str(result_dict[field]))}</li>"
html_output += "</ul>"
html_output += "</div>"
else:
html_output = "<p>No data found</p>"
html_output += "</div>"
return html_output
# Gradio interface
with gr.Blocks(title="Dictionary Search") as demo:
gr.Markdown("# Dictionary Search")
with gr.Row():
with gr.Column(scale=1):
search_input = gr.Textbox(label="Search Term", placeholder="Enter search term...")
search_button = gr.Button("Search")
gr.Markdown("### Language Options")
language = gr.Radio(
choices=["Amazigh", "Arabic", "French"],
label="Select Language",
value="Amazigh"
)
gr.Markdown("### Search Options")
exact_match = gr.Checkbox(label="Exact Match (whole cell)", value=True)
word_match = gr.Checkbox(label="Exact Word Match (within cell)", value=True)
contains = gr.Checkbox(label="Contains", value=True)
starts_with = gr.Checkbox(label="Starts With", value=False)
ends_with = gr.Checkbox(label="Ends With", value=False)
with gr.Column(scale=3):
output = gr.HTML(label="Results")
search_params = [search_input, language, exact_match, word_match, contains, starts_with, ends_with]
search_input.submit(
search_dictionary,
inputs=search_params,
outputs=output
)
search_button.click(
search_dictionary,
inputs=search_params,
outputs=output
)
demo.launch() |