File size: 9,870 Bytes
77e4338
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3726761
77e4338
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import gradio as gr
import sqlite3
import html
import re
import unicodedata
from typing import List, Dict

def normalize_text(text: str, language: str) -> str:
    """Normalize text based on language rules."""
    if not text:
        return text
    
    # Convert to lowercase and normalize Unicode
    text = text.lower()
    text = unicodedata.normalize('NFKD', text)
    
    if language == "Arabic":
        # Normalize Arabic alifs and remove diacritics
        text = re.sub(r'[إأآا]', 'ا', text)  # Normalize alifs
        text = re.sub(r'[ىي]', 'ي', text)    # Normalize ya
        text = re.sub(r'[ةه]', 'ه', text)    # Normalize ta marbuta and ha
        # Remove Arabic diacritics (fatha, kasra, damma, etc.)
        text = re.sub(r'[\u064B-\u065F\u0670]', '', text)
    
    elif language == "French":
        # Remove French diacritics by replacing accented characters with base characters
        text = ''.join(c for c in unicodedata.normalize('NFD', text)
                       if not unicodedata.combining(c))
    
    elif language == "Amazigh":
        # Normalize Amazigh characters
        text = text.replace('ⵕ', 'ⵔ')  # Treat ⵕ the same as ⵔ
        text = text.replace('ⵯ', '')    # Make character ⵯ unnecessary
    
    return text

def search_dictionary(search_term: str,
                     language: str,
                     exact_match: bool,
                     word_match: bool,
                     contains: bool,
                     starts_with: bool,
                     ends_with: bool) -> str:
    if not search_term or search_term.isspace():
        return "<p>Please enter a search term</p>"

    conn = sqlite3.connect('asawal_amqran.db')
    cursor = conn.cursor()

    # Normalize search term according to language-specific rules
    normalized_search = normalize_text(search_term, language)

    search_columns = {
        "Amazigh": ["word", "latin", "construct", "plural", "acc", "accneg", "inacc",
                   "variante", "feminine", "fem_construct", "fem_plural",
                   "fem_plural_construct", "exp_zgh"],
        "Arabic": ["arabic", "exp_ara", "mean_ar"],
        "French": ["french", "exp_fra"]
    }.get(language, [])

    if not search_columns:
        return "<p>Please select a language</p>"

    if not any([exact_match, word_match, contains, starts_with, ends_with]):
        return "<p>Please select at least one search option</p>"

    # Dictionary source priority mapping (lower number = higher priority)
    source_priority = {
        "IRCAM (DGLAi)": 1,
        "Msmun": 2,
        "Tawalt (Arabic)": 3,
        "Tawalt (French)": 4
    }
    
    priority_results = []
    seen_word_ids = set()

    # Get all data and filter in Python to handle normalization properly
    cursor.execute("SELECT * FROM lexie")
    column_names = [desc[0] for desc in cursor.description]
    word_id_idx = column_names.index('word_id') if 'word_id' in column_names else -1
    source_idx = column_names.index('source') if 'source' in column_names else -1
    all_rows = cursor.fetchall()
    
    for row in all_rows:
        if word_id_idx == -1 or row[word_id_idx] in seen_word_ids:
            continue
            
        # Get the source priority (default to lowest priority if source not found)
        source_value = row[source_idx] if source_idx >= 0 else None
        source_priority_value = source_priority.get(source_value, 999)
            
        # Check each relevant column with normalization
        for column_idx, column_name in enumerate(column_names):
            if column_name not in search_columns:
                continue
                
            cell_value = row[column_idx]
            if not cell_value:
                continue
                
            # Normalize the cell value according to language rules
            normalized_cell = normalize_text(str(cell_value), language)
            
            # Priority based on match type (1-5) and source priority (subpriority)
            
            # Priority 1: Exact Match
            if exact_match and normalized_cell == normalized_search:
                seen_word_ids.add(row[word_id_idx])
                # Use source priority as subpriority (1.001, 1.002, etc.)
                priority_results.append((1 + source_priority_value/1000, row))
                break
                
            # Priority 2: Word Match
            elif word_match and (normalized_cell == normalized_search or 
                                re.search(r'\b' + re.escape(normalized_search) + r'\b', normalized_cell)):
                seen_word_ids.add(row[word_id_idx])
                priority_results.append((2 + source_priority_value/1000, row))
                break
                
            # Priority 3: Contains
            elif contains and normalized_search in normalized_cell:
                seen_word_ids.add(row[word_id_idx])
                priority_results.append((3 + source_priority_value/1000, row))
                break
                
            # Priority 4: Starts With
            elif starts_with and normalized_cell.startswith(normalized_search):
                seen_word_ids.add(row[word_id_idx])
                priority_results.append((4 + source_priority_value/1000, row))
                break
                
            # Priority 5: Ends With
            elif ends_with and normalized_cell.endswith(normalized_search):
                seen_word_ids.add(row[word_id_idx])
                priority_results.append((5 + source_priority_value/1000, row))
                break

    conn.close()

    if not priority_results:
        return "<p>No results found</p>"

    # Sort by priority
    priority_results.sort(key=lambda x: x[0])
    results = [row for priority, row in priority_results]

    # Format results as HTML
    html_output = "<div style='font-family: Arial, sans-serif;'>"
    if column_names:
        for result in results:
           result_dict = dict(zip(column_names, result))

           html_output += "<div style='border: 1px solid #ccc; margin: 10px; padding: 15px; position: relative;'>"

           if 'source' in result_dict and result_dict['source']:
               html_output += f"<div style='text-align: center; font-style: italic;'>{html.escape(str(result_dict['source']))}</div>"
           if 'category' in result_dict and result_dict['category']:
               html_output += f"<div style='position: absolute; top: 10px; right: 10px; font-weight: bold;'>{html.escape(str(result_dict['category']))}</div>"

           html_output += "<h3>Word</h3><ul>"
           for field, label in [
               ('word', 'Word'), ('latin', 'Latin'), ('construct', 'Construct'),
               ('plural', 'Plural'), ('acc', 'Accusative'), ('accneg', 'Negative Accusative'),
               ('inacc', 'Inaccusative'), ('variante', 'Variant'), ('feminine', 'Feminine'),
               ('fem_construct', 'Feminine Construct'), ('fem_plural', 'Feminine Plural'),
               ('fem_plural_construct', 'Feminine Plural Construct')
           ]:
               if field in result_dict and result_dict[field]:
                   html_output += f"<li><strong>{label}:</strong> {html.escape(str(result_dict[field]))}</li>"
           html_output += "</ul>"

           html_output += "<h3>Translations</h3><ul>"
           if 'french' in result_dict and result_dict['french']:
               html_output += f"<li><strong>French:</strong> {html.escape(str(result_dict['french']))}</li>"
           if 'arabic' in result_dict and result_dict['arabic']:
               html_output += f"<li><strong>Arabic:</strong> {html.escape(str(result_dict['arabic']))}</li>"
           if 'mean_ar' in result_dict and result_dict['mean_ar']:
               html_output += f"<li><strong>Arabic Meaning:</strong> {html.escape(str(result_dict['mean_ar']))}</li>"
           html_output += "</ul>"

           html_output += "<h3>Expressions</h3><ul>"
           for field, label in [
               ('exp_zgh', 'Amazigh Expression'), ('exp_fra', 'French Expression'),
               ('exp_ara', 'Arabic Expression')
           ]:
               if field in result_dict and result_dict[field]:
                   html_output += f"<li><strong>{label}:</strong> {html.escape(str(result_dict[field]))}</li>"
           html_output += "</ul>"

           html_output += "</div>"
    else:
        html_output = "<p>No data found</p>"
    html_output += "</div>"
    return html_output

# Gradio interface
with gr.Blocks(title="Dictionary Search") as demo:
    gr.Markdown("# Dictionary Search")

    with gr.Row():
        with gr.Column(scale=1):
            search_input = gr.Textbox(label="Search Term", placeholder="Enter search term...")
            search_button = gr.Button("Search")

            gr.Markdown("### Language Options")
            language = gr.Radio(
                choices=["Amazigh", "Arabic", "French"],
                label="Select Language",
                value="Amazigh"
            )

            gr.Markdown("### Search Options")
            exact_match = gr.Checkbox(label="Exact Match (whole cell)", value=True)
            word_match = gr.Checkbox(label="Exact Word Match (within cell)", value=True)
            contains = gr.Checkbox(label="Contains", value=True)
            starts_with = gr.Checkbox(label="Starts With", value=False)
            ends_with = gr.Checkbox(label="Ends With", value=False)

        with gr.Column(scale=3):
            output = gr.HTML(label="Results")
    search_params = [search_input, language, exact_match, word_match, contains, starts_with, ends_with]
    search_input.submit(
        search_dictionary,
        inputs=search_params,
        outputs=output
    )
    search_button.click(
        search_dictionary,
        inputs=search_params,
        outputs=output
    )

demo.launch()