abderrahimbrighal commited on
Commit
df9eeef
·
verified ·
1 Parent(s): 69ab8fd

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +27 -0
app.py ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Import necessary libraries and modules
2
+ from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
3
+ from datasets import load_dataset
4
+ import torch
5
+ from IPython.display import Audio
6
+
7
+ # Load the processor and model for text-to-speech
8
+ processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
9
+ model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts")
10
+
11
+ # Prepare the input text
12
+ text = "Don't count the days, make the days count."
13
+ inputs = processor(text=text, return_tensors="pt")
14
+
15
+ # Load the speaker embeddings dataset and select a specific speaker
16
+ embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
17
+ speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
18
+
19
+ # Generate the spectrogram for the speech
20
+ spectrogram = model.generate_speech(inputs["input_ids"], speaker_embeddings)
21
+
22
+ # Load the vocoder model to convert the spectrogram to speech waveform
23
+ vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
24
+ speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder)
25
+
26
+ # Play the generated speech
27
+ Audio(speech, rate=16000)