# Import necessary libraries and modules from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan from datasets import load_dataset import torch from IPython.display import Audio # Load the processor and model for text-to-speech processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts") # Prepare the input text text = "Don't count the days, make the days count." inputs = processor(text=text, return_tensors="pt") # Load the speaker embeddings dataset and select a specific speaker embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0) # Generate the spectrogram for the speech spectrogram = model.generate_speech(inputs["input_ids"], speaker_embeddings) # Load the vocoder model to convert the spectrogram to speech waveform vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder) # Play the generated speech Audio(speech, rate=16000)