Spaces:
Paused
Paused
File size: 5,768 Bytes
ec32b31 28d09c0 408f80c 9de2232 408f80c 9de2232 408f80c 28d09c0 dcb3707 28d09c0 408f80c 28d09c0 408f80c 28d09c0 9de2232 408f80c 9de2232 9fc7678 408f80c 28d09c0 408f80c ad0cc09 408f80c 7d9941e 408f80c 9de2232 408f80c 11815e7 408f80c 11815e7 408f80c 11815e7 9de2232 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
import torch
import gradio as gr
import os
from threading import Thread
from typing import Iterator
from transformers import (
AutoModelForCausalLM,
BitsAndBytesConfig,
GenerationConfig,
AutoTokenizer,
TextIteratorStreamer,
)
from peft import AutoPeftModelForCausalLM
#deklarasi
max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.
#alpaca_prompt = """Berikut adalah instruksi yang deskripsikan tugas dan sepasang input dan konteksnya. Tulis response sesuai dengan permintaan.
### Instruction:
{}
### Input:
{}
### Response:
#{}"""
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
model_id = "abdfajar707/llama3_8B_lora_model_rkp_pn2025_v3"
#tokenizer = LlamaTokenizer.from_pretrained(model_id)
#model, tokenizer = AutoModelForCausalLM.from_pretrained(
# model_id,
# device_map="auto",
# quantization_config=BitsAndBytesConfig(load_in_8bit=True),
#)
model = AutoPeftModelForCausalLM.from_pretrained(
model_id, # YOUR MODEL YOU USED FOR TRAINING
load_in_4bit = load_in_4bit,
)
tokenizer = AutoTokenizer.from_pretrained(
model_id,
quantization_config=BitsAndBytesConfig(load_in_8bit=True)
)
model.config.sliding_window = 4096
model.eval()
#@spaces.GPU(duration=90)
def generate(
message: str,
chat_history: list[tuple[str, str]],
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
) -> Iterator[str]:
conversation = []
for user, assistant in chat_history:
conversation.extend(
[
{"role": "user", "content": user},
{"role": "assistant", "content": assistant},
]
)
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
repetition_penalty=repetition_penalty,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
DESCRIPTION = '''
<div style="padding: 5px; text-align: left; display: flex; flex-direction: column; align-items: left;">
<img src="https://sdgs.bappenas.go.id/repository/assets/bappenas_logo_square.png" style="width: 40%; max-width: 200px; height: auto; opacity: 0.55; ">
<h2 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">AI-Interlinked System/Bappenas GPT</h2>
</div>
'''
LICENSE = """
<p/>
---
Dibangun dari Meta Llama 3
"""
PLACEHOLDER = """
<div style="padding: 100px; text-align: center; display: flex; flex-direction: column; align-items: center;">
<img src="https://cdn3.iconfinder.com/data/icons/human-resources-flat-3/48/150-4096.png" style="width: 1000; max-width: 200px; height: auto; opacity: 0.55; ">
<h2 style="font-size: 20px; margin-bottom: 2px; opacity: 0.55;">Asisten Virtual Perencana</h2>
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Silakan mulai tanya...</p>
</div>
"""
css = """
h1 {
text-align: center;
display: block;
}
#duplicate-button {
margin: auto;
color: white;
background: #1565c0;
border-radius: 100vh;
}
"""
chatbot=gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Interlinked Sytem ChatInterface')
chat_interface = gr.ChatInterface(
fn=generate,
chatbot=chatbot,
additional_inputs=[
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="Temperature",
minimum=0.1,
maximum=4.0,
step=0.1,
value=0.6,
),
gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.9,
),
gr.Slider(
label="Top-k",
minimum=1,
maximum=1000,
step=1,
value=50,
),
gr.Slider(
label="Repetition penalty",
minimum=1.0,
maximum=2.0,
step=0.05,
value=1.2,
),
],
stop_btn=None,
examples=[
["Apa yang dimaksud dengan RPJMN"],
["Jelaskan tentang RPJMN 2020-2024"],
["Apa peran RKP 2021 dan 20211 dalam RPJM 2020-2024"],
["Apa saja program prioritas RPJMN 2020-2024"],
],
)
with gr.Blocks(css=css, fill_height=True) as demo:
gr.Markdown(DESCRIPTION)
#gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
chat_interface.render()
if __name__ == "__main__":
demo.queue(max_size=20).launch() |