abdfajar707 commited on
Commit
528be03
·
verified ·
1 Parent(s): 67f5201

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +23 -37
app.py CHANGED
@@ -1,4 +1,4 @@
1
- from unsloth import FastLanguageModel
2
  import torch
3
  import gradio as gr
4
 
@@ -6,20 +6,17 @@ max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!
6
  dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
7
  load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.
8
  alpaca_prompt = """Berikut adalah instruksi yang deskripsikan tugas dan sepasang input dan konteksnya. Tulis response sesuai dengan permintaan.
9
-
10
  ### Instruction:
11
  {}
12
-
13
  ### Input:
14
  {}
15
-
16
  ### Response:
17
  {}"""
18
 
19
  if True:
20
- from unsloth import FastLanguageModel
21
  model, tokenizer = FastLanguageModel.from_pretrained(
22
- model_name = "abdfajar707/llama3_8B_lora_model_rkp_v3", # YOUR MODEL YOU USED FOR TRAINING
23
  max_seq_length = max_seq_length,
24
  dtype = dtype,
25
  load_in_4bit = load_in_4bit,
@@ -42,37 +39,26 @@ def generate_response(prompt, max_length=1000):
42
  response = tokenizer.decode(outputs[0], skip_special_tokens=True)
43
  return response
44
 
45
- # Fungsi untuk antarmuka Gradio
46
- def chatbot_interface(user_input, history):
47
- # Buat respons dari model
48
- response = generate_response(user_input)
49
- # Perbarui riwayat percakapan
50
- history.append(("User", user_input))
51
- history.append(("Bot", response))
52
- return history, history
53
 
54
- # Definisikan input dan output untuk antarmuka menggunakan Gradio versi terbaru
55
- inputs = [
56
- gr.Textbox(lines=1, label="Masukkan pesan Anda"),
57
- gr.State(value=[]) # Untuk menyimpan riwayat percakapan
58
- ]
 
 
 
 
 
 
 
 
 
 
 
59
 
60
- outputs = [
61
- gr.Chatbot(label="Respons Chatbot"),
62
- gr.State() # Untuk memperbarui riwayat percakapan
63
- ]
64
-
65
- # Buat dan luncurkan antarmuka Gradio
66
- interface = gr.Interface(
67
- fn=chatbot_interface,
68
- inputs=inputs,
69
- outputs=outputs,
70
- title="LLaMA3 LoRA Chatbot",
71
- description="Chatbot yang didukung oleh model LLaMA3 dengan modifikasi LoRA."
72
- )
73
-
74
- # Jalankan antarmuka
75
  interface.launch()
76
-
77
- #demo = gr.Interface(fn=greet, inputs=gr.Number(), outputs=gr.Text())
78
- #demo.launch()
 
1
+ from app import FastLanguageModel
2
  import torch
3
  import gradio as gr
4
 
 
6
  dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
7
  load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.
8
  alpaca_prompt = """Berikut adalah instruksi yang deskripsikan tugas dan sepasang input dan konteksnya. Tulis response sesuai dengan permintaan.
 
9
  ### Instruction:
10
  {}
 
11
  ### Input:
12
  {}
 
13
  ### Response:
14
  {}"""
15
 
16
  if True:
17
+ from app import FastLanguageModel
18
  model, tokenizer = FastLanguageModel.from_pretrained(
19
+ model_name = "abdfajar707/llama3_8B_lora_model_rkp_v2", # YOUR MODEL YOU USED FOR TRAINING
20
  max_seq_length = max_seq_length,
21
  dtype = dtype,
22
  load_in_4bit = load_in_4bit,
 
39
  response = tokenizer.decode(outputs[0], skip_special_tokens=True)
40
  return response
41
 
42
+ history = []
43
+ def wrapper_chat_history(chat_history, history):
44
+ chat_history = history[1:]
45
+ return chat_history
 
 
 
 
46
 
47
+ def converse(message, chat_history):
48
+ response = generate_response(message)
49
+ print(response)
50
+ user_msg = {"role": "user", "content": message}
51
+ history.append(user_msg)
52
+ ai_msg = {"role": "assistant", "content": response}
53
+ history.append(ai_msg)
54
+ return history[-1]["content"]
55
+
56
+ with gr.Blocks() as interface:
57
+ with gr.Row():
58
+ with gr.Column(scale=1):
59
+ gr.HTML('<img src="https://datahub.data.go.id/data/static/Kementerian%20PPN%20Bappenas%20Tanpa%20Teks.png" width="100px" alt="Image" style="max-width: 100%;">')
60
+ with gr.Row():
61
+ with gr.Column():
62
+ gr.ChatInterface(fn=converse, title="PPN/Bappenas - AI Interlinked")
63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64
  interface.launch()