File size: 3,088 Bytes
0625161 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
import streamlit as st
import pandas as pd
import numpy as np
import pickle
from sklearn.preprocessing import LabelEncoder
from sklearn.ensemble import RandomForestClassifier
import base64
import seaborn as sns
st.write("""
# Penguin Prediction App
This app predicts the **Palmer Penguin** species!
Data obtained from the [palmerpenguins library](https://github.com/allisonhorst/palmerpenguins) in R by Allison Horst.
""")
st.sidebar.title('File Upload Features')
# Collects user input features into dataframe
uploaded_file = st.sidebar.file_uploader("Upload your input CSV file", type=["csv"])
if uploaded_file is not None:
df = pd.read_csv(uploaded_file)
st.dataframe(df)
le = LabelEncoder()
df.sex = le.fit_transform(df.sex)
load_clf = pickle.load(open('penguins_clf.pkl', 'rb'))
prediction = load_clf.predict(df)
prediction_proba = load_clf.predict_proba(df)
st.subheader('Prediction')
penguins_species = np.array(['Adelie','Chinstrap','Gentoo'])
pp = pd.DataFrame(penguins_species[prediction],columns=["prediction"])
st.write(pp)
st.subheader('Prediction Probability')
st.dataframe(prediction_proba)
ndf = pd.concat([df,pp],axis=1)
st.write(ndf)
plot = sns.barplot(x ="bill_length_mm",y="bill_depth_mm",data = df )
st.pyplot(plot)
def filedownload(df):
csv = df.to_csv(index=False)
b64 = base64.b64encode(csv.encode()).decode() # strings <-> bytes conversions
href = f'<a href="data:file/csv;base64,{b64}" download="penguins_predictions.csv">Download CSV File</a>'
return href
st.markdown(filedownload(ndf), unsafe_allow_html=True)
else:
st.sidebar.title("Manual Feature input")
def user_input_features():
sex = st.sidebar.selectbox('Sex',('male','female'))
bill_length_mm = st.sidebar.slider('Bill length (mm)', 32.1,59.6,43.9)
bill_depth_mm = st.sidebar.slider('Bill depth (mm)', 13.1,21.5,17.2)
flipper_length_mm = st.sidebar.slider('Flipper length (mm)', 172.0,231.0,201.0)
body_mass_g = st.sidebar.slider('Body mass (g)', 2700.0,6300.0,4207.0)
data = {
'bill_length_mm': bill_length_mm,
'bill_depth_mm': bill_depth_mm,
'flipper_length_mm': flipper_length_mm,
'body_mass_g': body_mass_g,
'sex': sex}
features = pd.DataFrame(data, index=[0])
return features
input_df = user_input_features()
st.subheader('User Input features')
st.write('Awaiting CSV file to be uploaded. Currently using example input parameters (shown below).')
st.write(input_df)
le = LabelEncoder()
input_df.sex = le.fit_transform(input_df.sex)
load_clf = pickle.load(open('penguins_clf.pkl', 'rb'))
prediction = load_clf.predict(input_df)
prediction_proba = load_clf.predict_proba(input_df)
st.subheader('Prediction')
penguins_species = np.array(['Adelie','Chinstrap','Gentoo'])
st.write(penguins_species[prediction])
st.subheader('Prediction Probability')
st.write(prediction_proba)
|