ATP commited on
Commit
8746ace
·
1 Parent(s): 09f2988

Add application file

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. app.py +177 -0
  2. audio.py +136 -0
  3. checkpoints/README.md +1 -0
  4. color_syncnet_train.py +279 -0
  5. evaluation/README.md +63 -0
  6. evaluation/gen_videos_from_filelist.py +238 -0
  7. evaluation/real_videos_inference.py +305 -0
  8. evaluation/scores_LSE/SyncNetInstance_calc_scores.py +210 -0
  9. evaluation/scores_LSE/calculate_scores_LRS.py +53 -0
  10. evaluation/scores_LSE/calculate_scores_real_videos.py +45 -0
  11. evaluation/scores_LSE/calculate_scores_real_videos.sh +8 -0
  12. evaluation/test_filelists/README.md +13 -0
  13. evaluation/test_filelists/ReSyncED/random_pairs.txt +160 -0
  14. evaluation/test_filelists/ReSyncED/tts_pairs.txt +18 -0
  15. evaluation/test_filelists/lrs2.txt +0 -0
  16. evaluation/test_filelists/lrs3.txt +0 -0
  17. evaluation/test_filelists/lrw.txt +0 -0
  18. face_detection/README.md +1 -0
  19. face_detection/__init__.py +7 -0
  20. face_detection/__pycache__/__init__.cpython-36.pyc +0 -0
  21. face_detection/__pycache__/__init__.cpython-38.pyc +0 -0
  22. face_detection/__pycache__/__init__.cpython-39.pyc +0 -0
  23. face_detection/__pycache__/api.cpython-36.pyc +0 -0
  24. face_detection/__pycache__/api.cpython-38.pyc +0 -0
  25. face_detection/__pycache__/api.cpython-39.pyc +0 -0
  26. face_detection/__pycache__/models.cpython-36.pyc +0 -0
  27. face_detection/__pycache__/models.cpython-38.pyc +0 -0
  28. face_detection/__pycache__/models.cpython-39.pyc +0 -0
  29. face_detection/__pycache__/utils.cpython-36.pyc +0 -0
  30. face_detection/__pycache__/utils.cpython-38.pyc +0 -0
  31. face_detection/__pycache__/utils.cpython-39.pyc +0 -0
  32. face_detection/api.py +79 -0
  33. face_detection/detection/__init__.py +1 -0
  34. face_detection/detection/__pycache__/__init__.cpython-36.pyc +0 -0
  35. face_detection/detection/__pycache__/__init__.cpython-38.pyc +0 -0
  36. face_detection/detection/__pycache__/core.cpython-36.pyc +0 -0
  37. face_detection/detection/__pycache__/core.cpython-38.pyc +0 -0
  38. face_detection/detection/core.py +130 -0
  39. face_detection/detection/sfd/__init__.py +1 -0
  40. face_detection/detection/sfd/__pycache__/__init__.cpython-36.pyc +0 -0
  41. face_detection/detection/sfd/__pycache__/__init__.cpython-38.pyc +0 -0
  42. face_detection/detection/sfd/__pycache__/bbox.cpython-36.pyc +0 -0
  43. face_detection/detection/sfd/__pycache__/bbox.cpython-38.pyc +0 -0
  44. face_detection/detection/sfd/__pycache__/detect.cpython-36.pyc +0 -0
  45. face_detection/detection/sfd/__pycache__/detect.cpython-38.pyc +0 -0
  46. face_detection/detection/sfd/__pycache__/net_s3fd.cpython-36.pyc +0 -0
  47. face_detection/detection/sfd/__pycache__/net_s3fd.cpython-38.pyc +0 -0
  48. face_detection/detection/sfd/__pycache__/sfd_detector.cpython-36.pyc +0 -0
  49. face_detection/detection/sfd/__pycache__/sfd_detector.cpython-38.pyc +0 -0
  50. face_detection/detection/sfd/bbox.py +129 -0
app.py ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import subprocess
3
+ from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC, AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
4
+ import torch
5
+ import librosa
6
+ import tempfile
7
+ from neon_tts_plugin_coqui import CoquiTTS
8
+ from gtts import gTTS
9
+ from numba import cuda
10
+
11
+ #variables
12
+ language_input_audio = 'en'
13
+ language_output_audio='ch'
14
+ dict_lang = {
15
+ 'en': 'eng_latn',
16
+ 'es': 'spa_Latn',
17
+ 'fr': 'fra_Latn',
18
+ 'de': 'deu_Latn',
19
+ 'pl': 'pol_Latn',
20
+ 'uk': 'ukr_Cyrl',
21
+ 'ro': 'ron_Latn',
22
+ 'hu': 'hun_Latn',
23
+ 'bg': 'bul_Cyrl',
24
+ 'nl': 'nld_Latn',
25
+ 'fi': 'fin_Latn',
26
+ 'sl': 'slv_Latn',
27
+ 'lv': 'lvs_Latn',
28
+ 'ga': 'gle_Latn',
29
+ 'ch': 'zho_Hant',
30
+ 'ru': 'rus_Cyrl'
31
+ }
32
+
33
+ #functions
34
+ def radio_lang_input(lang):
35
+ language_input_audio = lang
36
+ return {var: language_input_audio}
37
+
38
+ #a function that determines the language of the output audio
39
+ def radio_input(lang):
40
+ language_output_audio = lang
41
+ return {var_lang: language_output_audio}
42
+
43
+ ##
44
+ #convert input video file to text, audio, video
45
+ def video_load(video, language_input_audio, language_output_audio):
46
+ #convert video to video720p -s 1280x720
47
+ #
48
+ subprocess.run(f'ffmpeg -y -i {video} -vf scale=720:-2 video720p.mp4', shell=True)
49
+ #convert video to audio
50
+ #
51
+ subprocess.run('ffmpeg -y -i video720p.mp4 -vn -ar 16000 -ac 2 -ab 192K -f wav sound_from_input_video.wav', shell=True)
52
+ #convert audio to text
53
+ #
54
+ # load model and tokenizer
55
+ if language_input_audio == 'en':
56
+ processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
57
+ model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
58
+ audio, rate = librosa.load('sound_from_input_video.wav', sr = 16000)
59
+ input_values = processor(audio, sampling_rate=rate, return_tensors="pt", padding="longest").input_values
60
+ # retrieve logits
61
+ logits = model(input_values).logits
62
+ # take argmax and decode
63
+ predicted_ids = torch.argmax(logits, dim=-1)
64
+ transcription = processor.batch_decode(predicted_ids)[0]
65
+ if language_input_audio == 'ru':
66
+ processor = Wav2Vec2Processor.from_pretrained("jonatasgrosman/wav2vec2-large-xlsr-53-russian")
67
+ model = Wav2Vec2ForCTC.from_pretrained("jonatasgrosman/wav2vec2-large-xlsr-53-russian")
68
+ audio, rate = librosa.load('sound_from_input_video.wav', sr = 16000)
69
+ input_values = processor(audio, sampling_rate=rate, return_tensors="pt", padding="longest").input_values
70
+ # retrieve logits
71
+ logits = model(input_values).logits
72
+ # take argmax and decode
73
+ predicted_ids = torch.argmax(logits, dim=-1)
74
+ transcription = processor.batch_decode(predicted_ids)[0]
75
+ #convert text to text translations
76
+ #
77
+ model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M")
78
+ tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M")
79
+ device = 0 if torch.cuda.is_available() else -1
80
+ translation_pipeline = pipeline("translation", model=model, tokenizer=tokenizer, src_lang=dict_lang[language_input_audio], tgt_lang=dict_lang[language_output_audio], max_length=2000000, device=-1)
81
+ result = translation_pipeline(transcription)
82
+ text_translations = result[0]['translation_text']
83
+ #convert text to audio
84
+ #
85
+ #ru
86
+ if language_output_audio == 'ru':
87
+ tts = gTTS(text_translations, lang='ru')
88
+ tts.save('ru.mp3')
89
+ audio = 'ru.mp3'
90
+ #Vashington obcom
91
+ if language_output_audio in ['en', 'es', 'fr', 'de', 'pl', 'uk', 'ro', 'hu', 'bg', 'nl', 'fi', 'sl', 'lv', 'ga']:
92
+ coquiTTS = CoquiTTS()
93
+ with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp:
94
+ coquiTTS.get_tts(text_translations, fp, speaker = {"language" : language_output_audio})
95
+ audio = fp.name
96
+ #Chineese
97
+ if language_output_audio == 'ch':
98
+ tts = gTTS(text_translations, lang='zh-CN')
99
+ tts.save('china.mp3')
100
+ audio = 'china.mp3'
101
+ #audio to video
102
+ #
103
+ subprocess.run(f'python inference.py --checkpoint_path wav2lip_gan.pth --face video720p.mp4 --audio {audio} --nosmooth --pads 0 20 0 0', shell=True)
104
+ video = 'results/result_voice.mp4'
105
+ return text_translations, audio, video
106
+
107
+ ##
108
+ # function for create video from audio
109
+ def audio_to_video_custom(audio):
110
+ subprocess.run(f'python inference.py --checkpoint_path wav2lip_gan.pth --face video720p.mp4 --audio {audio} --nosmooth --pads 0 20 0 0', shell=True)
111
+ video = 'results/result_voice.mp4'
112
+ return video
113
+
114
+ ##
115
+ # function for create audio from custom translations
116
+ def text_to_audio_custom(text_translations, language_output_audio):
117
+ #ru
118
+ if language_output_audio == 'ru':
119
+ tts = gTTS(text_translations, lang='ru')
120
+ tts.save('ru.mp3')
121
+ audio = 'ru.mp3'
122
+ #Vashington obcom
123
+ if language_output_audio in ['en', 'es', 'fr', 'de', 'pl', 'uk', 'ro', 'hu', 'bg', 'nl', 'fi', 'sl', 'lv', 'ga']:
124
+ coquiTTS = CoquiTTS()
125
+ with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp:
126
+ coquiTTS.get_tts(text_translations, fp, speaker = {"language" : language_output_audio})
127
+ audio = fp.name
128
+
129
+ #Chineese
130
+ if language_output_audio == 'ch':
131
+ tts = gTTS(text_translations, lang='zh-CN')
132
+ tts.save('china.mp3')
133
+ audio = 'china.mp3'
134
+ return audio
135
+
136
+ ##### blocks
137
+ with gr.Blocks(title="Speak video in any language") as demo:
138
+ # state variable
139
+ var = gr.State('en')
140
+ var_lang = gr.State('ch')
141
+ # markdown text
142
+ gr.Markdown("Service for translating videos into other languages ​​with support for the speaker's facial expressions")
143
+ gr.Markdown("The uploaded video must be only with a face. Preferably without sudden movements of the head.")
144
+ with gr.Row():
145
+ with gr.Column():
146
+ # radio button for change input lang
147
+ radio_input_lang_video = gr.Radio(['en', 'ru'], value="en", label='Select input video language')
148
+ # video input
149
+ seed = gr.Video(label="Input Video")
150
+ # radio button for change to output language
151
+ radio = gr.Radio(['en', 'es', 'fr', 'de', 'pl', 'uk', 'ro', 'hu', 'bg', 'nl', 'fi', 'sl', 'lv', 'ga', 'ch', 'ru'], value="ch", label='Choose the language you want to speak')
152
+ # main button
153
+ btn_1 = gr.Button("1. Generate video with translated audio")
154
+
155
+ with gr.Column():
156
+ # text output
157
+ translations_text = gr.Text(label="Generated Translations Text", interactive=True)
158
+ # button to generate text to audio
159
+ btn_3 = gr.Button("Generate custom translations to speech")
160
+ # output audio
161
+ translations_audio = gr.Audio(label="Generated Translations Audio", interactive=True, type="filepath")
162
+ # button to generate audio to video
163
+ btn_2 = gr.Button("Generate video with custom audio")
164
+ # video output
165
+ video_output = gr.Video(interactive=False, label="Generated Translations Video")
166
+ # change input lang video
167
+ radio_input_lang_video.change(fn=radio_lang_input, inputs=radio_input_lang_video, outputs=var)
168
+ # change output lang
169
+ radio.change(fn=radio_input, inputs=radio, outputs=var_lang)
170
+ # main button click
171
+ btn_1.click(video_load, inputs=[seed, var, var_lang], outputs=[translations_text, translations_audio, video_output])
172
+ # button click to custom audio to video
173
+ btn_2.click(audio_to_video_custom, inputs=[translations_audio], outputs=[video_output])
174
+ # button click to custom test to audio
175
+ btn_3.click(text_to_audio_custom, inputs=[translations_text, var_lang], outputs=[translations_audio])
176
+
177
+ demo.launch(show_api=False)
audio.py ADDED
@@ -0,0 +1,136 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import librosa
2
+ import librosa.filters
3
+ import numpy as np
4
+ # import tensorflow as tf
5
+ from scipy import signal
6
+ from scipy.io import wavfile
7
+ from hparams import hparams as hp
8
+
9
+ def load_wav(path, sr):
10
+ return librosa.core.load(path, sr=sr)[0]
11
+
12
+ def save_wav(wav, path, sr):
13
+ wav *= 32767 / max(0.01, np.max(np.abs(wav)))
14
+ #proposed by @dsmiller
15
+ wavfile.write(path, sr, wav.astype(np.int16))
16
+
17
+ def save_wavenet_wav(wav, path, sr):
18
+ librosa.output.write_wav(path, wav, sr=sr)
19
+
20
+ def preemphasis(wav, k, preemphasize=True):
21
+ if preemphasize:
22
+ return signal.lfilter([1, -k], [1], wav)
23
+ return wav
24
+
25
+ def inv_preemphasis(wav, k, inv_preemphasize=True):
26
+ if inv_preemphasize:
27
+ return signal.lfilter([1], [1, -k], wav)
28
+ return wav
29
+
30
+ def get_hop_size():
31
+ hop_size = hp.hop_size
32
+ if hop_size is None:
33
+ assert hp.frame_shift_ms is not None
34
+ hop_size = int(hp.frame_shift_ms / 1000 * hp.sample_rate)
35
+ return hop_size
36
+
37
+ def linearspectrogram(wav):
38
+ D = _stft(preemphasis(wav, hp.preemphasis, hp.preemphasize))
39
+ S = _amp_to_db(np.abs(D)) - hp.ref_level_db
40
+
41
+ if hp.signal_normalization:
42
+ return _normalize(S)
43
+ return S
44
+
45
+ def melspectrogram(wav):
46
+ D = _stft(preemphasis(wav, hp.preemphasis, hp.preemphasize))
47
+ S = _amp_to_db(_linear_to_mel(np.abs(D))) - hp.ref_level_db
48
+
49
+ if hp.signal_normalization:
50
+ return _normalize(S)
51
+ return S
52
+
53
+ def _lws_processor():
54
+ import lws
55
+ return lws.lws(hp.n_fft, get_hop_size(), fftsize=hp.win_size, mode="speech")
56
+
57
+ def _stft(y):
58
+ if hp.use_lws:
59
+ return _lws_processor(hp).stft(y).T
60
+ else:
61
+ return librosa.stft(y=y, n_fft=hp.n_fft, hop_length=get_hop_size(), win_length=hp.win_size)
62
+
63
+ ##########################################################
64
+ #Those are only correct when using lws!!! (This was messing with Wavenet quality for a long time!)
65
+ def num_frames(length, fsize, fshift):
66
+ """Compute number of time frames of spectrogram
67
+ """
68
+ pad = (fsize - fshift)
69
+ if length % fshift == 0:
70
+ M = (length + pad * 2 - fsize) // fshift + 1
71
+ else:
72
+ M = (length + pad * 2 - fsize) // fshift + 2
73
+ return M
74
+
75
+
76
+ def pad_lr(x, fsize, fshift):
77
+ """Compute left and right padding
78
+ """
79
+ M = num_frames(len(x), fsize, fshift)
80
+ pad = (fsize - fshift)
81
+ T = len(x) + 2 * pad
82
+ r = (M - 1) * fshift + fsize - T
83
+ return pad, pad + r
84
+ ##########################################################
85
+ #Librosa correct padding
86
+ def librosa_pad_lr(x, fsize, fshift):
87
+ return 0, (x.shape[0] // fshift + 1) * fshift - x.shape[0]
88
+
89
+ # Conversions
90
+ _mel_basis = None
91
+
92
+ def _linear_to_mel(spectogram):
93
+ global _mel_basis
94
+ if _mel_basis is None:
95
+ _mel_basis = _build_mel_basis()
96
+ return np.dot(_mel_basis, spectogram)
97
+
98
+ def _build_mel_basis():
99
+ assert hp.fmax <= hp.sample_rate // 2
100
+ return librosa.filters.mel(hp.sample_rate, hp.n_fft, n_mels=hp.num_mels,
101
+ fmin=hp.fmin, fmax=hp.fmax)
102
+
103
+ def _amp_to_db(x):
104
+ min_level = np.exp(hp.min_level_db / 20 * np.log(10))
105
+ return 20 * np.log10(np.maximum(min_level, x))
106
+
107
+ def _db_to_amp(x):
108
+ return np.power(10.0, (x) * 0.05)
109
+
110
+ def _normalize(S):
111
+ if hp.allow_clipping_in_normalization:
112
+ if hp.symmetric_mels:
113
+ return np.clip((2 * hp.max_abs_value) * ((S - hp.min_level_db) / (-hp.min_level_db)) - hp.max_abs_value,
114
+ -hp.max_abs_value, hp.max_abs_value)
115
+ else:
116
+ return np.clip(hp.max_abs_value * ((S - hp.min_level_db) / (-hp.min_level_db)), 0, hp.max_abs_value)
117
+
118
+ assert S.max() <= 0 and S.min() - hp.min_level_db >= 0
119
+ if hp.symmetric_mels:
120
+ return (2 * hp.max_abs_value) * ((S - hp.min_level_db) / (-hp.min_level_db)) - hp.max_abs_value
121
+ else:
122
+ return hp.max_abs_value * ((S - hp.min_level_db) / (-hp.min_level_db))
123
+
124
+ def _denormalize(D):
125
+ if hp.allow_clipping_in_normalization:
126
+ if hp.symmetric_mels:
127
+ return (((np.clip(D, -hp.max_abs_value,
128
+ hp.max_abs_value) + hp.max_abs_value) * -hp.min_level_db / (2 * hp.max_abs_value))
129
+ + hp.min_level_db)
130
+ else:
131
+ return ((np.clip(D, 0, hp.max_abs_value) * -hp.min_level_db / hp.max_abs_value) + hp.min_level_db)
132
+
133
+ if hp.symmetric_mels:
134
+ return (((D + hp.max_abs_value) * -hp.min_level_db / (2 * hp.max_abs_value)) + hp.min_level_db)
135
+ else:
136
+ return ((D * -hp.min_level_db / hp.max_abs_value) + hp.min_level_db)
checkpoints/README.md ADDED
@@ -0,0 +1 @@
 
 
1
+ Place all your checkpoints (.pth files) here.
color_syncnet_train.py ADDED
@@ -0,0 +1,279 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from os.path import dirname, join, basename, isfile
2
+ from tqdm import tqdm
3
+
4
+ from models import SyncNet_color as SyncNet
5
+ import audio
6
+
7
+ import torch
8
+ from torch import nn
9
+ from torch import optim
10
+ import torch.backends.cudnn as cudnn
11
+ from torch.utils import data as data_utils
12
+ import numpy as np
13
+
14
+ from glob import glob
15
+
16
+ import os, random, cv2, argparse
17
+ from hparams import hparams, get_image_list
18
+
19
+ parser = argparse.ArgumentParser(description='Code to train the expert lip-sync discriminator')
20
+
21
+ parser.add_argument("--data_root", help="Root folder of the preprocessed LRS2 dataset", required=True)
22
+
23
+ parser.add_argument('--checkpoint_dir', help='Save checkpoints to this directory', required=True, type=str)
24
+ parser.add_argument('--checkpoint_path', help='Resumed from this checkpoint', default=None, type=str)
25
+
26
+ args = parser.parse_args()
27
+
28
+
29
+ global_step = 0
30
+ global_epoch = 0
31
+ use_cuda = torch.cuda.is_available()
32
+ print('use_cuda: {}'.format(use_cuda))
33
+
34
+ syncnet_T = 5
35
+ syncnet_mel_step_size = 16
36
+
37
+ class Dataset(object):
38
+ def __init__(self, split):
39
+ self.all_videos = get_image_list(args.data_root, split)
40
+
41
+ def get_frame_id(self, frame):
42
+ return int(basename(frame).split('.')[0])
43
+
44
+ def get_window(self, start_frame):
45
+ start_id = self.get_frame_id(start_frame)
46
+ vidname = dirname(start_frame)
47
+
48
+ window_fnames = []
49
+ for frame_id in range(start_id, start_id + syncnet_T):
50
+ frame = join(vidname, '{}.jpg'.format(frame_id))
51
+ if not isfile(frame):
52
+ return None
53
+ window_fnames.append(frame)
54
+ return window_fnames
55
+
56
+ def crop_audio_window(self, spec, start_frame):
57
+ # num_frames = (T x hop_size * fps) / sample_rate
58
+ start_frame_num = self.get_frame_id(start_frame)
59
+ start_idx = int(80. * (start_frame_num / float(hparams.fps)))
60
+
61
+ end_idx = start_idx + syncnet_mel_step_size
62
+
63
+ return spec[start_idx : end_idx, :]
64
+
65
+
66
+ def __len__(self):
67
+ return len(self.all_videos)
68
+
69
+ def __getitem__(self, idx):
70
+ while 1:
71
+ idx = random.randint(0, len(self.all_videos) - 1)
72
+ vidname = self.all_videos[idx]
73
+
74
+ img_names = list(glob(join(vidname, '*.jpg')))
75
+ if len(img_names) <= 3 * syncnet_T:
76
+ continue
77
+ img_name = random.choice(img_names)
78
+ wrong_img_name = random.choice(img_names)
79
+ while wrong_img_name == img_name:
80
+ wrong_img_name = random.choice(img_names)
81
+
82
+ if random.choice([True, False]):
83
+ y = torch.ones(1).float()
84
+ chosen = img_name
85
+ else:
86
+ y = torch.zeros(1).float()
87
+ chosen = wrong_img_name
88
+
89
+ window_fnames = self.get_window(chosen)
90
+ if window_fnames is None:
91
+ continue
92
+
93
+ window = []
94
+ all_read = True
95
+ for fname in window_fnames:
96
+ img = cv2.imread(fname)
97
+ if img is None:
98
+ all_read = False
99
+ break
100
+ try:
101
+ img = cv2.resize(img, (hparams.img_size, hparams.img_size))
102
+ except Exception as e:
103
+ all_read = False
104
+ break
105
+
106
+ window.append(img)
107
+
108
+ if not all_read: continue
109
+
110
+ try:
111
+ wavpath = join(vidname, "audio.wav")
112
+ wav = audio.load_wav(wavpath, hparams.sample_rate)
113
+
114
+ orig_mel = audio.melspectrogram(wav).T
115
+ except Exception as e:
116
+ continue
117
+
118
+ mel = self.crop_audio_window(orig_mel.copy(), img_name)
119
+
120
+ if (mel.shape[0] != syncnet_mel_step_size):
121
+ continue
122
+
123
+ # H x W x 3 * T
124
+ x = np.concatenate(window, axis=2) / 255.
125
+ x = x.transpose(2, 0, 1)
126
+ x = x[:, x.shape[1]//2:]
127
+
128
+ x = torch.FloatTensor(x)
129
+ mel = torch.FloatTensor(mel.T).unsqueeze(0)
130
+
131
+ return x, mel, y
132
+
133
+ logloss = nn.BCELoss()
134
+ def cosine_loss(a, v, y):
135
+ d = nn.functional.cosine_similarity(a, v)
136
+ loss = logloss(d.unsqueeze(1), y)
137
+
138
+ return loss
139
+
140
+ def train(device, model, train_data_loader, test_data_loader, optimizer,
141
+ checkpoint_dir=None, checkpoint_interval=None, nepochs=None):
142
+
143
+ global global_step, global_epoch
144
+ resumed_step = global_step
145
+
146
+ while global_epoch < nepochs:
147
+ running_loss = 0.
148
+ prog_bar = tqdm(enumerate(train_data_loader))
149
+ for step, (x, mel, y) in prog_bar:
150
+ model.train()
151
+ optimizer.zero_grad()
152
+
153
+ # Transform data to CUDA device
154
+ x = x.to(device)
155
+
156
+ mel = mel.to(device)
157
+
158
+ a, v = model(mel, x)
159
+ y = y.to(device)
160
+
161
+ loss = cosine_loss(a, v, y)
162
+ loss.backward()
163
+ optimizer.step()
164
+
165
+ global_step += 1
166
+ cur_session_steps = global_step - resumed_step
167
+ running_loss += loss.item()
168
+
169
+ if global_step == 1 or global_step % checkpoint_interval == 0:
170
+ save_checkpoint(
171
+ model, optimizer, global_step, checkpoint_dir, global_epoch)
172
+
173
+ if global_step % hparams.syncnet_eval_interval == 0:
174
+ with torch.no_grad():
175
+ eval_model(test_data_loader, global_step, device, model, checkpoint_dir)
176
+
177
+ prog_bar.set_description('Loss: {}'.format(running_loss / (step + 1)))
178
+
179
+ global_epoch += 1
180
+
181
+ def eval_model(test_data_loader, global_step, device, model, checkpoint_dir):
182
+ eval_steps = 1400
183
+ print('Evaluating for {} steps'.format(eval_steps))
184
+ losses = []
185
+ while 1:
186
+ for step, (x, mel, y) in enumerate(test_data_loader):
187
+
188
+ model.eval()
189
+
190
+ # Transform data to CUDA device
191
+ x = x.to(device)
192
+
193
+ mel = mel.to(device)
194
+
195
+ a, v = model(mel, x)
196
+ y = y.to(device)
197
+
198
+ loss = cosine_loss(a, v, y)
199
+ losses.append(loss.item())
200
+
201
+ if step > eval_steps: break
202
+
203
+ averaged_loss = sum(losses) / len(losses)
204
+ print(averaged_loss)
205
+
206
+ return
207
+
208
+ def save_checkpoint(model, optimizer, step, checkpoint_dir, epoch):
209
+
210
+ checkpoint_path = join(
211
+ checkpoint_dir, "checkpoint_step{:09d}.pth".format(global_step))
212
+ optimizer_state = optimizer.state_dict() if hparams.save_optimizer_state else None
213
+ torch.save({
214
+ "state_dict": model.state_dict(),
215
+ "optimizer": optimizer_state,
216
+ "global_step": step,
217
+ "global_epoch": epoch,
218
+ }, checkpoint_path)
219
+ print("Saved checkpoint:", checkpoint_path)
220
+
221
+ def _load(checkpoint_path):
222
+ if use_cuda:
223
+ checkpoint = torch.load(checkpoint_path)
224
+ else:
225
+ checkpoint = torch.load(checkpoint_path,
226
+ map_location=lambda storage, loc: storage)
227
+ return checkpoint
228
+
229
+ def load_checkpoint(path, model, optimizer, reset_optimizer=False):
230
+ global global_step
231
+ global global_epoch
232
+
233
+ print("Load checkpoint from: {}".format(path))
234
+ checkpoint = _load(path)
235
+ model.load_state_dict(checkpoint["state_dict"])
236
+ if not reset_optimizer:
237
+ optimizer_state = checkpoint["optimizer"]
238
+ if optimizer_state is not None:
239
+ print("Load optimizer state from {}".format(path))
240
+ optimizer.load_state_dict(checkpoint["optimizer"])
241
+ global_step = checkpoint["global_step"]
242
+ global_epoch = checkpoint["global_epoch"]
243
+
244
+ return model
245
+
246
+ if __name__ == "__main__":
247
+ checkpoint_dir = args.checkpoint_dir
248
+ checkpoint_path = args.checkpoint_path
249
+
250
+ if not os.path.exists(checkpoint_dir): os.mkdir(checkpoint_dir)
251
+
252
+ # Dataset and Dataloader setup
253
+ train_dataset = Dataset('train')
254
+ test_dataset = Dataset('val')
255
+
256
+ train_data_loader = data_utils.DataLoader(
257
+ train_dataset, batch_size=hparams.syncnet_batch_size, shuffle=True,
258
+ num_workers=hparams.num_workers)
259
+
260
+ test_data_loader = data_utils.DataLoader(
261
+ test_dataset, batch_size=hparams.syncnet_batch_size,
262
+ num_workers=8)
263
+
264
+ device = torch.device("cuda" if use_cuda else "cpu")
265
+
266
+ # Model
267
+ model = SyncNet().to(device)
268
+ print('total trainable params {}'.format(sum(p.numel() for p in model.parameters() if p.requires_grad)))
269
+
270
+ optimizer = optim.Adam([p for p in model.parameters() if p.requires_grad],
271
+ lr=hparams.syncnet_lr)
272
+
273
+ if checkpoint_path is not None:
274
+ load_checkpoint(checkpoint_path, model, optimizer, reset_optimizer=False)
275
+
276
+ train(device, model, train_data_loader, test_data_loader, optimizer,
277
+ checkpoint_dir=checkpoint_dir,
278
+ checkpoint_interval=hparams.syncnet_checkpoint_interval,
279
+ nepochs=hparams.nepochs)
evaluation/README.md ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Novel Evaluation Framework, new filelists, and using the LSE-D and LSE-C metric.
2
+
3
+ Our paper also proposes a novel evaluation framework (Section 4). To evaluate on LRS2, LRS3, and LRW, the filelists are present in the `test_filelists` folder. Please use `gen_videos_from_filelist.py` script to generate the videos. After that, you can calculate the LSE-D and LSE-C scores using the instructions below. Please see [this thread](https://github.com/Rudrabha/Wav2Lip/issues/22#issuecomment-712825380) on how to calculate the FID scores.
4
+
5
+ The videos of the ReSyncED benchmark for real-world evaluation will be released soon.
6
+
7
+ ### Steps to set-up the evaluation repository for LSE-D and LSE-C metric:
8
+ We use the pre-trained syncnet model available in this [repository](https://github.com/joonson/syncnet_python).
9
+
10
+ * Clone the SyncNet repository.
11
+ ```
12
+ git clone https://github.com/joonson/syncnet_python.git
13
+ ```
14
+ * Follow the procedure given in the above linked [repository](https://github.com/joonson/syncnet_python) to download the pretrained models and set up the dependencies.
15
+ * **Note: Please install a separate virtual environment for the evaluation scripts. The versions used by Wav2Lip and the publicly released code of SyncNet is different and can cause version mis-match issues. To avoid this, we suggest the users to install a separate virtual environment for the evaluation scripts**
16
+ ```
17
+ cd syncnet_python
18
+ pip install -r requirements.txt
19
+ sh download_model.sh
20
+ ```
21
+ * The above step should ensure that all the dependencies required by the repository is installed and the pre-trained models are downloaded.
22
+
23
+ ### Running the evaluation scripts:
24
+ * Copy our evaluation scripts given in this folder to the cloned repository.
25
+ ```
26
+ cd Wav2Lip/evaluation/scores_LSE/
27
+ cp *.py syncnet_python/
28
+ cp *.sh syncnet_python/
29
+ ```
30
+ **Note: We will release the test filelists for LRW, LRS2 and LRS3 shortly once we receive permission from the dataset creators. We will also release the Real World Dataset we have collected shortly.**
31
+
32
+ * Our evaluation technique does not require ground-truth of any sorts. Given lip-synced videos we can directly calculate the scores from only the generated videos. Please store the generated videos (from our test sets or your own generated videos) in the following folder structure.
33
+ ```
34
+ video data root (Folder containing all videos)
35
+ ├── All .mp4 files
36
+ ```
37
+ * Change the folder back to the cloned repository.
38
+ ```
39
+ cd syncnet_python
40
+ ```
41
+ * To run evaluation on the LRW, LRS2 and LRS3 test files, please run the following command:
42
+ ```
43
+ python calculate_scores_LRS.py --data_root /path/to/video/data/root --tmp_dir tmp_dir/
44
+ ```
45
+
46
+ * To run evaluation on the ReSynced dataset or your own generated videos, please run the following command:
47
+ ```
48
+ sh calculate_scores_real_videos.sh /path/to/video/data/root
49
+ ```
50
+ * The generated scores will be present in the all_scores.txt generated in the ```syncnet_python/``` folder
51
+
52
+ # Evaluation of image quality using FID metric.
53
+ We use the [pytorch-fid](https://github.com/mseitzer/pytorch-fid) repository for calculating the FID metrics. We dump all the frames in both ground-truth and generated videos and calculate the FID score.
54
+
55
+
56
+ # Opening issues related to evaluation scripts
57
+ * Please open the issues with the "Evaluation" label if you face any issues in the evaluation scripts.
58
+
59
+ # Acknowledgements
60
+ Our evaluation pipeline in based on two existing repositories. LSE metrics are based on the [syncnet_python](https://github.com/joonson/syncnet_python) repository and the FID score is based on [pytorch-fid](https://github.com/mseitzer/pytorch-fid) repository. We thank the authors of both the repositories for releasing their wonderful code.
61
+
62
+
63
+
evaluation/gen_videos_from_filelist.py ADDED
@@ -0,0 +1,238 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from os import listdir, path
2
+ import numpy as np
3
+ import scipy, cv2, os, sys, argparse
4
+ import dlib, json, subprocess
5
+ from tqdm import tqdm
6
+ from glob import glob
7
+ import torch
8
+
9
+ sys.path.append('../')
10
+ import audio
11
+ import face_detection
12
+ from models import Wav2Lip
13
+
14
+ parser = argparse.ArgumentParser(description='Code to generate results for test filelists')
15
+
16
+ parser.add_argument('--filelist', type=str,
17
+ help='Filepath of filelist file to read', required=True)
18
+ parser.add_argument('--results_dir', type=str, help='Folder to save all results into',
19
+ required=True)
20
+ parser.add_argument('--data_root', type=str, required=True)
21
+ parser.add_argument('--checkpoint_path', type=str,
22
+ help='Name of saved checkpoint to load weights from', required=True)
23
+
24
+ parser.add_argument('--pads', nargs='+', type=int, default=[0, 0, 0, 0],
25
+ help='Padding (top, bottom, left, right)')
26
+ parser.add_argument('--face_det_batch_size', type=int,
27
+ help='Single GPU batch size for face detection', default=64)
28
+ parser.add_argument('--wav2lip_batch_size', type=int, help='Batch size for Wav2Lip', default=128)
29
+
30
+ # parser.add_argument('--resize_factor', default=1, type=int)
31
+
32
+ args = parser.parse_args()
33
+ args.img_size = 96
34
+
35
+ def get_smoothened_boxes(boxes, T):
36
+ for i in range(len(boxes)):
37
+ if i + T > len(boxes):
38
+ window = boxes[len(boxes) - T:]
39
+ else:
40
+ window = boxes[i : i + T]
41
+ boxes[i] = np.mean(window, axis=0)
42
+ return boxes
43
+
44
+ def face_detect(images):
45
+ batch_size = args.face_det_batch_size
46
+
47
+ while 1:
48
+ predictions = []
49
+ try:
50
+ for i in range(0, len(images), batch_size):
51
+ predictions.extend(detector.get_detections_for_batch(np.array(images[i:i + batch_size])))
52
+ except RuntimeError:
53
+ if batch_size == 1:
54
+ raise RuntimeError('Image too big to run face detection on GPU')
55
+ batch_size //= 2
56
+ args.face_det_batch_size = batch_size
57
+ print('Recovering from OOM error; New batch size: {}'.format(batch_size))
58
+ continue
59
+ break
60
+
61
+ results = []
62
+ pady1, pady2, padx1, padx2 = args.pads
63
+ for rect, image in zip(predictions, images):
64
+ if rect is None:
65
+ raise ValueError('Face not detected!')
66
+
67
+ y1 = max(0, rect[1] - pady1)
68
+ y2 = min(image.shape[0], rect[3] + pady2)
69
+ x1 = max(0, rect[0] - padx1)
70
+ x2 = min(image.shape[1], rect[2] + padx2)
71
+
72
+ results.append([x1, y1, x2, y2])
73
+
74
+ boxes = get_smoothened_boxes(np.array(results), T=5)
75
+ results = [[image[y1: y2, x1:x2], (y1, y2, x1, x2), True] for image, (x1, y1, x2, y2) in zip(images, boxes)]
76
+
77
+ return results
78
+
79
+ def datagen(frames, face_det_results, mels):
80
+ img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []
81
+
82
+ for i, m in enumerate(mels):
83
+ if i >= len(frames): raise ValueError('Equal or less lengths only')
84
+
85
+ frame_to_save = frames[i].copy()
86
+ face, coords, valid_frame = face_det_results[i].copy()
87
+ if not valid_frame:
88
+ continue
89
+
90
+ face = cv2.resize(face, (args.img_size, args.img_size))
91
+
92
+ img_batch.append(face)
93
+ mel_batch.append(m)
94
+ frame_batch.append(frame_to_save)
95
+ coords_batch.append(coords)
96
+
97
+ if len(img_batch) >= args.wav2lip_batch_size:
98
+ img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
99
+
100
+ img_masked = img_batch.copy()
101
+ img_masked[:, args.img_size//2:] = 0
102
+
103
+ img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
104
+ mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
105
+
106
+ yield img_batch, mel_batch, frame_batch, coords_batch
107
+ img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []
108
+
109
+ if len(img_batch) > 0:
110
+ img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
111
+
112
+ img_masked = img_batch.copy()
113
+ img_masked[:, args.img_size//2:] = 0
114
+
115
+ img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
116
+ mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
117
+
118
+ yield img_batch, mel_batch, frame_batch, coords_batch
119
+
120
+ fps = 25
121
+ mel_step_size = 16
122
+ mel_idx_multiplier = 80./fps
123
+ device = 'cuda' if torch.cuda.is_available() else 'cpu'
124
+ print('Using {} for inference.'.format(device))
125
+
126
+ detector = face_detection.FaceAlignment(face_detection.LandmarksType._2D,
127
+ flip_input=False, device=device)
128
+
129
+ def _load(checkpoint_path):
130
+ if device == 'cuda':
131
+ checkpoint = torch.load(checkpoint_path)
132
+ else:
133
+ checkpoint = torch.load(checkpoint_path,
134
+ map_location=lambda storage, loc: storage)
135
+ return checkpoint
136
+
137
+ def load_model(path):
138
+ model = Wav2Lip()
139
+ print("Load checkpoint from: {}".format(path))
140
+ checkpoint = _load(path)
141
+ s = checkpoint["state_dict"]
142
+ new_s = {}
143
+ for k, v in s.items():
144
+ new_s[k.replace('module.', '')] = v
145
+ model.load_state_dict(new_s)
146
+
147
+ model = model.to(device)
148
+ return model.eval()
149
+
150
+ model = load_model(args.checkpoint_path)
151
+
152
+ def main():
153
+ assert args.data_root is not None
154
+ data_root = args.data_root
155
+
156
+ if not os.path.isdir(args.results_dir): os.makedirs(args.results_dir)
157
+
158
+ with open(args.filelist, 'r') as filelist:
159
+ lines = filelist.readlines()
160
+
161
+ for idx, line in enumerate(tqdm(lines)):
162
+ audio_src, video = line.strip().split()
163
+
164
+ audio_src = os.path.join(data_root, audio_src) + '.mp4'
165
+ video = os.path.join(data_root, video) + '.mp4'
166
+
167
+ command = 'ffmpeg -loglevel panic -y -i {} -strict -2 {}'.format(audio_src, '../temp/temp.wav')
168
+ subprocess.call(command, shell=True)
169
+ temp_audio = '../temp/temp.wav'
170
+
171
+ wav = audio.load_wav(temp_audio, 16000)
172
+ mel = audio.melspectrogram(wav)
173
+ if np.isnan(mel.reshape(-1)).sum() > 0:
174
+ continue
175
+
176
+ mel_chunks = []
177
+ i = 0
178
+ while 1:
179
+ start_idx = int(i * mel_idx_multiplier)
180
+ if start_idx + mel_step_size > len(mel[0]):
181
+ break
182
+ mel_chunks.append(mel[:, start_idx : start_idx + mel_step_size])
183
+ i += 1
184
+
185
+ video_stream = cv2.VideoCapture(video)
186
+
187
+ full_frames = []
188
+ while 1:
189
+ still_reading, frame = video_stream.read()
190
+ if not still_reading or len(full_frames) > len(mel_chunks):
191
+ video_stream.release()
192
+ break
193
+ full_frames.append(frame)
194
+
195
+ if len(full_frames) < len(mel_chunks):
196
+ continue
197
+
198
+ full_frames = full_frames[:len(mel_chunks)]
199
+
200
+ try:
201
+ face_det_results = face_detect(full_frames.copy())
202
+ except ValueError as e:
203
+ continue
204
+
205
+ batch_size = args.wav2lip_batch_size
206
+ gen = datagen(full_frames.copy(), face_det_results, mel_chunks)
207
+
208
+ for i, (img_batch, mel_batch, frames, coords) in enumerate(gen):
209
+ if i == 0:
210
+ frame_h, frame_w = full_frames[0].shape[:-1]
211
+ out = cv2.VideoWriter('../temp/result.avi',
212
+ cv2.VideoWriter_fourcc(*'DIVX'), fps, (frame_w, frame_h))
213
+
214
+ img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to(device)
215
+ mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to(device)
216
+
217
+ with torch.no_grad():
218
+ pred = model(mel_batch, img_batch)
219
+
220
+
221
+ pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255.
222
+
223
+ for pl, f, c in zip(pred, frames, coords):
224
+ y1, y2, x1, x2 = c
225
+ pl = cv2.resize(pl.astype(np.uint8), (x2 - x1, y2 - y1))
226
+ f[y1:y2, x1:x2] = pl
227
+ out.write(f)
228
+
229
+ out.release()
230
+
231
+ vid = os.path.join(args.results_dir, '{}.mp4'.format(idx))
232
+
233
+ command = 'ffmpeg -loglevel panic -y -i {} -i {} -strict -2 -q:v 1 {}'.format(temp_audio,
234
+ '../temp/result.avi', vid)
235
+ subprocess.call(command, shell=True)
236
+
237
+ if __name__ == '__main__':
238
+ main()
evaluation/real_videos_inference.py ADDED
@@ -0,0 +1,305 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from os import listdir, path
2
+ import numpy as np
3
+ import scipy, cv2, os, sys, argparse
4
+ import dlib, json, subprocess
5
+ from tqdm import tqdm
6
+ from glob import glob
7
+ import torch
8
+
9
+ sys.path.append('../')
10
+ import audio
11
+ import face_detection
12
+ from models import Wav2Lip
13
+
14
+ parser = argparse.ArgumentParser(description='Code to generate results on ReSyncED evaluation set')
15
+
16
+ parser.add_argument('--mode', type=str,
17
+ help='random | dubbed | tts', required=True)
18
+
19
+ parser.add_argument('--filelist', type=str,
20
+ help='Filepath of filelist file to read', default=None)
21
+
22
+ parser.add_argument('--results_dir', type=str, help='Folder to save all results into',
23
+ required=True)
24
+ parser.add_argument('--data_root', type=str, required=True)
25
+ parser.add_argument('--checkpoint_path', type=str,
26
+ help='Name of saved checkpoint to load weights from', required=True)
27
+ parser.add_argument('--pads', nargs='+', type=int, default=[0, 10, 0, 0],
28
+ help='Padding (top, bottom, left, right)')
29
+
30
+ parser.add_argument('--face_det_batch_size', type=int,
31
+ help='Single GPU batch size for face detection', default=16)
32
+
33
+ parser.add_argument('--wav2lip_batch_size', type=int, help='Batch size for Wav2Lip', default=128)
34
+ parser.add_argument('--face_res', help='Approximate resolution of the face at which to test', default=180)
35
+ parser.add_argument('--min_frame_res', help='Do not downsample further below this frame resolution', default=480)
36
+ parser.add_argument('--max_frame_res', help='Downsample to at least this frame resolution', default=720)
37
+ # parser.add_argument('--resize_factor', default=1, type=int)
38
+
39
+ args = parser.parse_args()
40
+ args.img_size = 96
41
+
42
+ def get_smoothened_boxes(boxes, T):
43
+ for i in range(len(boxes)):
44
+ if i + T > len(boxes):
45
+ window = boxes[len(boxes) - T:]
46
+ else:
47
+ window = boxes[i : i + T]
48
+ boxes[i] = np.mean(window, axis=0)
49
+ return boxes
50
+
51
+ def rescale_frames(images):
52
+ rect = detector.get_detections_for_batch(np.array([images[0]]))[0]
53
+ if rect is None:
54
+ raise ValueError('Face not detected!')
55
+ h, w = images[0].shape[:-1]
56
+
57
+ x1, y1, x2, y2 = rect
58
+
59
+ face_size = max(np.abs(y1 - y2), np.abs(x1 - x2))
60
+
61
+ diff = np.abs(face_size - args.face_res)
62
+ for factor in range(2, 16):
63
+ downsampled_res = face_size // factor
64
+ if min(h//factor, w//factor) < args.min_frame_res: break
65
+ if np.abs(downsampled_res - args.face_res) >= diff: break
66
+
67
+ factor -= 1
68
+ if factor == 1: return images
69
+
70
+ return [cv2.resize(im, (im.shape[1]//(factor), im.shape[0]//(factor))) for im in images]
71
+
72
+
73
+ def face_detect(images):
74
+ batch_size = args.face_det_batch_size
75
+ images = rescale_frames(images)
76
+
77
+ while 1:
78
+ predictions = []
79
+ try:
80
+ for i in range(0, len(images), batch_size):
81
+ predictions.extend(detector.get_detections_for_batch(np.array(images[i:i + batch_size])))
82
+ except RuntimeError:
83
+ if batch_size == 1:
84
+ raise RuntimeError('Image too big to run face detection on GPU')
85
+ batch_size //= 2
86
+ print('Recovering from OOM error; New batch size: {}'.format(batch_size))
87
+ continue
88
+ break
89
+
90
+ results = []
91
+ pady1, pady2, padx1, padx2 = args.pads
92
+ for rect, image in zip(predictions, images):
93
+ if rect is None:
94
+ raise ValueError('Face not detected!')
95
+
96
+ y1 = max(0, rect[1] - pady1)
97
+ y2 = min(image.shape[0], rect[3] + pady2)
98
+ x1 = max(0, rect[0] - padx1)
99
+ x2 = min(image.shape[1], rect[2] + padx2)
100
+
101
+ results.append([x1, y1, x2, y2])
102
+
103
+ boxes = get_smoothened_boxes(np.array(results), T=5)
104
+ results = [[image[y1: y2, x1:x2], (y1, y2, x1, x2), True] for image, (x1, y1, x2, y2) in zip(images, boxes)]
105
+
106
+ return results, images
107
+
108
+ def datagen(frames, face_det_results, mels):
109
+ img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []
110
+
111
+ for i, m in enumerate(mels):
112
+ if i >= len(frames): raise ValueError('Equal or less lengths only')
113
+
114
+ frame_to_save = frames[i].copy()
115
+ face, coords, valid_frame = face_det_results[i].copy()
116
+ if not valid_frame:
117
+ continue
118
+
119
+ face = cv2.resize(face, (args.img_size, args.img_size))
120
+
121
+ img_batch.append(face)
122
+ mel_batch.append(m)
123
+ frame_batch.append(frame_to_save)
124
+ coords_batch.append(coords)
125
+
126
+ if len(img_batch) >= args.wav2lip_batch_size:
127
+ img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
128
+
129
+ img_masked = img_batch.copy()
130
+ img_masked[:, args.img_size//2:] = 0
131
+
132
+ img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
133
+ mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
134
+
135
+ yield img_batch, mel_batch, frame_batch, coords_batch
136
+ img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []
137
+
138
+ if len(img_batch) > 0:
139
+ img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
140
+
141
+ img_masked = img_batch.copy()
142
+ img_masked[:, args.img_size//2:] = 0
143
+
144
+ img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
145
+ mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
146
+
147
+ yield img_batch, mel_batch, frame_batch, coords_batch
148
+
149
+ def increase_frames(frames, l):
150
+ ## evenly duplicating frames to increase length of video
151
+ while len(frames) < l:
152
+ dup_every = float(l) / len(frames)
153
+
154
+ final_frames = []
155
+ next_duplicate = 0.
156
+
157
+ for i, f in enumerate(frames):
158
+ final_frames.append(f)
159
+
160
+ if int(np.ceil(next_duplicate)) == i:
161
+ final_frames.append(f)
162
+
163
+ next_duplicate += dup_every
164
+
165
+ frames = final_frames
166
+
167
+ return frames[:l]
168
+
169
+ mel_step_size = 16
170
+ device = 'cuda' if torch.cuda.is_available() else 'cpu'
171
+ print('Using {} for inference.'.format(device))
172
+
173
+ detector = face_detection.FaceAlignment(face_detection.LandmarksType._2D,
174
+ flip_input=False, device=device)
175
+
176
+ def _load(checkpoint_path):
177
+ if device == 'cuda':
178
+ checkpoint = torch.load(checkpoint_path)
179
+ else:
180
+ checkpoint = torch.load(checkpoint_path,
181
+ map_location=lambda storage, loc: storage)
182
+ return checkpoint
183
+
184
+ def load_model(path):
185
+ model = Wav2Lip()
186
+ print("Load checkpoint from: {}".format(path))
187
+ checkpoint = _load(path)
188
+ s = checkpoint["state_dict"]
189
+ new_s = {}
190
+ for k, v in s.items():
191
+ new_s[k.replace('module.', '')] = v
192
+ model.load_state_dict(new_s)
193
+
194
+ model = model.to(device)
195
+ return model.eval()
196
+
197
+ model = load_model(args.checkpoint_path)
198
+
199
+ def main():
200
+ if not os.path.isdir(args.results_dir): os.makedirs(args.results_dir)
201
+
202
+ if args.mode == 'dubbed':
203
+ files = listdir(args.data_root)
204
+ lines = ['{} {}'.format(f, f) for f in files]
205
+
206
+ else:
207
+ assert args.filelist is not None
208
+ with open(args.filelist, 'r') as filelist:
209
+ lines = filelist.readlines()
210
+
211
+ for idx, line in enumerate(tqdm(lines)):
212
+ video, audio_src = line.strip().split()
213
+
214
+ audio_src = os.path.join(args.data_root, audio_src)
215
+ video = os.path.join(args.data_root, video)
216
+
217
+ command = 'ffmpeg -loglevel panic -y -i {} -strict -2 {}'.format(audio_src, '../temp/temp.wav')
218
+ subprocess.call(command, shell=True)
219
+ temp_audio = '../temp/temp.wav'
220
+
221
+ wav = audio.load_wav(temp_audio, 16000)
222
+ mel = audio.melspectrogram(wav)
223
+
224
+ if np.isnan(mel.reshape(-1)).sum() > 0:
225
+ raise ValueError('Mel contains nan!')
226
+
227
+ video_stream = cv2.VideoCapture(video)
228
+
229
+ fps = video_stream.get(cv2.CAP_PROP_FPS)
230
+ mel_idx_multiplier = 80./fps
231
+
232
+ full_frames = []
233
+ while 1:
234
+ still_reading, frame = video_stream.read()
235
+ if not still_reading:
236
+ video_stream.release()
237
+ break
238
+
239
+ if min(frame.shape[:-1]) > args.max_frame_res:
240
+ h, w = frame.shape[:-1]
241
+ scale_factor = min(h, w) / float(args.max_frame_res)
242
+ h = int(h/scale_factor)
243
+ w = int(w/scale_factor)
244
+
245
+ frame = cv2.resize(frame, (w, h))
246
+ full_frames.append(frame)
247
+
248
+ mel_chunks = []
249
+ i = 0
250
+ while 1:
251
+ start_idx = int(i * mel_idx_multiplier)
252
+ if start_idx + mel_step_size > len(mel[0]):
253
+ break
254
+ mel_chunks.append(mel[:, start_idx : start_idx + mel_step_size])
255
+ i += 1
256
+
257
+ if len(full_frames) < len(mel_chunks):
258
+ if args.mode == 'tts':
259
+ full_frames = increase_frames(full_frames, len(mel_chunks))
260
+ else:
261
+ raise ValueError('#Frames, audio length mismatch')
262
+
263
+ else:
264
+ full_frames = full_frames[:len(mel_chunks)]
265
+
266
+ try:
267
+ face_det_results, full_frames = face_detect(full_frames.copy())
268
+ except ValueError as e:
269
+ continue
270
+
271
+ batch_size = args.wav2lip_batch_size
272
+ gen = datagen(full_frames.copy(), face_det_results, mel_chunks)
273
+
274
+ for i, (img_batch, mel_batch, frames, coords) in enumerate(gen):
275
+ if i == 0:
276
+ frame_h, frame_w = full_frames[0].shape[:-1]
277
+
278
+ out = cv2.VideoWriter('../temp/result.avi',
279
+ cv2.VideoWriter_fourcc(*'DIVX'), fps, (frame_w, frame_h))
280
+
281
+ img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to(device)
282
+ mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to(device)
283
+
284
+ with torch.no_grad():
285
+ pred = model(mel_batch, img_batch)
286
+
287
+
288
+ pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255.
289
+
290
+ for pl, f, c in zip(pred, frames, coords):
291
+ y1, y2, x1, x2 = c
292
+ pl = cv2.resize(pl.astype(np.uint8), (x2 - x1, y2 - y1))
293
+ f[y1:y2, x1:x2] = pl
294
+ out.write(f)
295
+
296
+ out.release()
297
+
298
+ vid = os.path.join(args.results_dir, '{}.mp4'.format(idx))
299
+ command = 'ffmpeg -loglevel panic -y -i {} -i {} -strict -2 -q:v 1 {}'.format('../temp/temp.wav',
300
+ '../temp/result.avi', vid)
301
+ subprocess.call(command, shell=True)
302
+
303
+
304
+ if __name__ == '__main__':
305
+ main()
evaluation/scores_LSE/SyncNetInstance_calc_scores.py ADDED
@@ -0,0 +1,210 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/python
2
+ #-*- coding: utf-8 -*-
3
+ # Video 25 FPS, Audio 16000HZ
4
+
5
+ import torch
6
+ import numpy
7
+ import time, pdb, argparse, subprocess, os, math, glob
8
+ import cv2
9
+ import python_speech_features
10
+
11
+ from scipy import signal
12
+ from scipy.io import wavfile
13
+ from SyncNetModel import *
14
+ from shutil import rmtree
15
+
16
+
17
+ # ==================== Get OFFSET ====================
18
+
19
+ def calc_pdist(feat1, feat2, vshift=10):
20
+
21
+ win_size = vshift*2+1
22
+
23
+ feat2p = torch.nn.functional.pad(feat2,(0,0,vshift,vshift))
24
+
25
+ dists = []
26
+
27
+ for i in range(0,len(feat1)):
28
+
29
+ dists.append(torch.nn.functional.pairwise_distance(feat1[[i],:].repeat(win_size, 1), feat2p[i:i+win_size,:]))
30
+
31
+ return dists
32
+
33
+ # ==================== MAIN DEF ====================
34
+
35
+ class SyncNetInstance(torch.nn.Module):
36
+
37
+ def __init__(self, dropout = 0, num_layers_in_fc_layers = 1024):
38
+ super(SyncNetInstance, self).__init__();
39
+
40
+ self.__S__ = S(num_layers_in_fc_layers = num_layers_in_fc_layers).cuda();
41
+
42
+ def evaluate(self, opt, videofile):
43
+
44
+ self.__S__.eval();
45
+
46
+ # ========== ==========
47
+ # Convert files
48
+ # ========== ==========
49
+
50
+ if os.path.exists(os.path.join(opt.tmp_dir,opt.reference)):
51
+ rmtree(os.path.join(opt.tmp_dir,opt.reference))
52
+
53
+ os.makedirs(os.path.join(opt.tmp_dir,opt.reference))
54
+
55
+ command = ("ffmpeg -loglevel error -y -i %s -threads 1 -f image2 %s" % (videofile,os.path.join(opt.tmp_dir,opt.reference,'%06d.jpg')))
56
+ output = subprocess.call(command, shell=True, stdout=None)
57
+
58
+ command = ("ffmpeg -loglevel error -y -i %s -async 1 -ac 1 -vn -acodec pcm_s16le -ar 16000 %s" % (videofile,os.path.join(opt.tmp_dir,opt.reference,'audio.wav')))
59
+ output = subprocess.call(command, shell=True, stdout=None)
60
+
61
+ # ========== ==========
62
+ # Load video
63
+ # ========== ==========
64
+
65
+ images = []
66
+
67
+ flist = glob.glob(os.path.join(opt.tmp_dir,opt.reference,'*.jpg'))
68
+ flist.sort()
69
+
70
+ for fname in flist:
71
+ img_input = cv2.imread(fname)
72
+ img_input = cv2.resize(img_input, (224,224)) #HARD CODED, CHANGE BEFORE RELEASE
73
+ images.append(img_input)
74
+
75
+ im = numpy.stack(images,axis=3)
76
+ im = numpy.expand_dims(im,axis=0)
77
+ im = numpy.transpose(im,(0,3,4,1,2))
78
+
79
+ imtv = torch.autograd.Variable(torch.from_numpy(im.astype(float)).float())
80
+
81
+ # ========== ==========
82
+ # Load audio
83
+ # ========== ==========
84
+
85
+ sample_rate, audio = wavfile.read(os.path.join(opt.tmp_dir,opt.reference,'audio.wav'))
86
+ mfcc = zip(*python_speech_features.mfcc(audio,sample_rate))
87
+ mfcc = numpy.stack([numpy.array(i) for i in mfcc])
88
+
89
+ cc = numpy.expand_dims(numpy.expand_dims(mfcc,axis=0),axis=0)
90
+ cct = torch.autograd.Variable(torch.from_numpy(cc.astype(float)).float())
91
+
92
+ # ========== ==========
93
+ # Check audio and video input length
94
+ # ========== ==========
95
+
96
+ #if (float(len(audio))/16000) != (float(len(images))/25) :
97
+ # print("WARNING: Audio (%.4fs) and video (%.4fs) lengths are different."%(float(len(audio))/16000,float(len(images))/25))
98
+
99
+ min_length = min(len(images),math.floor(len(audio)/640))
100
+
101
+ # ========== ==========
102
+ # Generate video and audio feats
103
+ # ========== ==========
104
+
105
+ lastframe = min_length-5
106
+ im_feat = []
107
+ cc_feat = []
108
+
109
+ tS = time.time()
110
+ for i in range(0,lastframe,opt.batch_size):
111
+
112
+ im_batch = [ imtv[:,:,vframe:vframe+5,:,:] for vframe in range(i,min(lastframe,i+opt.batch_size)) ]
113
+ im_in = torch.cat(im_batch,0)
114
+ im_out = self.__S__.forward_lip(im_in.cuda());
115
+ im_feat.append(im_out.data.cpu())
116
+
117
+ cc_batch = [ cct[:,:,:,vframe*4:vframe*4+20] for vframe in range(i,min(lastframe,i+opt.batch_size)) ]
118
+ cc_in = torch.cat(cc_batch,0)
119
+ cc_out = self.__S__.forward_aud(cc_in.cuda())
120
+ cc_feat.append(cc_out.data.cpu())
121
+
122
+ im_feat = torch.cat(im_feat,0)
123
+ cc_feat = torch.cat(cc_feat,0)
124
+
125
+ # ========== ==========
126
+ # Compute offset
127
+ # ========== ==========
128
+
129
+ #print('Compute time %.3f sec.' % (time.time()-tS))
130
+
131
+ dists = calc_pdist(im_feat,cc_feat,vshift=opt.vshift)
132
+ mdist = torch.mean(torch.stack(dists,1),1)
133
+
134
+ minval, minidx = torch.min(mdist,0)
135
+
136
+ offset = opt.vshift-minidx
137
+ conf = torch.median(mdist) - minval
138
+
139
+ fdist = numpy.stack([dist[minidx].numpy() for dist in dists])
140
+ # fdist = numpy.pad(fdist, (3,3), 'constant', constant_values=15)
141
+ fconf = torch.median(mdist).numpy() - fdist
142
+ fconfm = signal.medfilt(fconf,kernel_size=9)
143
+
144
+ numpy.set_printoptions(formatter={'float': '{: 0.3f}'.format})
145
+ #print('Framewise conf: ')
146
+ #print(fconfm)
147
+ #print('AV offset: \t%d \nMin dist: \t%.3f\nConfidence: \t%.3f' % (offset,minval,conf))
148
+
149
+ dists_npy = numpy.array([ dist.numpy() for dist in dists ])
150
+ return offset.numpy(), conf.numpy(), minval.numpy()
151
+
152
+ def extract_feature(self, opt, videofile):
153
+
154
+ self.__S__.eval();
155
+
156
+ # ========== ==========
157
+ # Load video
158
+ # ========== ==========
159
+ cap = cv2.VideoCapture(videofile)
160
+
161
+ frame_num = 1;
162
+ images = []
163
+ while frame_num:
164
+ frame_num += 1
165
+ ret, image = cap.read()
166
+ if ret == 0:
167
+ break
168
+
169
+ images.append(image)
170
+
171
+ im = numpy.stack(images,axis=3)
172
+ im = numpy.expand_dims(im,axis=0)
173
+ im = numpy.transpose(im,(0,3,4,1,2))
174
+
175
+ imtv = torch.autograd.Variable(torch.from_numpy(im.astype(float)).float())
176
+
177
+ # ========== ==========
178
+ # Generate video feats
179
+ # ========== ==========
180
+
181
+ lastframe = len(images)-4
182
+ im_feat = []
183
+
184
+ tS = time.time()
185
+ for i in range(0,lastframe,opt.batch_size):
186
+
187
+ im_batch = [ imtv[:,:,vframe:vframe+5,:,:] for vframe in range(i,min(lastframe,i+opt.batch_size)) ]
188
+ im_in = torch.cat(im_batch,0)
189
+ im_out = self.__S__.forward_lipfeat(im_in.cuda());
190
+ im_feat.append(im_out.data.cpu())
191
+
192
+ im_feat = torch.cat(im_feat,0)
193
+
194
+ # ========== ==========
195
+ # Compute offset
196
+ # ========== ==========
197
+
198
+ print('Compute time %.3f sec.' % (time.time()-tS))
199
+
200
+ return im_feat
201
+
202
+
203
+ def loadParameters(self, path):
204
+ loaded_state = torch.load(path, map_location=lambda storage, loc: storage);
205
+
206
+ self_state = self.__S__.state_dict();
207
+
208
+ for name, param in loaded_state.items():
209
+
210
+ self_state[name].copy_(param);
evaluation/scores_LSE/calculate_scores_LRS.py ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/python
2
+ #-*- coding: utf-8 -*-
3
+
4
+ import time, pdb, argparse, subprocess
5
+ import glob
6
+ import os
7
+ from tqdm import tqdm
8
+
9
+ from SyncNetInstance_calc_scores import *
10
+
11
+ # ==================== LOAD PARAMS ====================
12
+
13
+
14
+ parser = argparse.ArgumentParser(description = "SyncNet");
15
+
16
+ parser.add_argument('--initial_model', type=str, default="data/syncnet_v2.model", help='');
17
+ parser.add_argument('--batch_size', type=int, default='20', help='');
18
+ parser.add_argument('--vshift', type=int, default='15', help='');
19
+ parser.add_argument('--data_root', type=str, required=True, help='');
20
+ parser.add_argument('--tmp_dir', type=str, default="data/work/pytmp", help='');
21
+ parser.add_argument('--reference', type=str, default="demo", help='');
22
+
23
+ opt = parser.parse_args();
24
+
25
+
26
+ # ==================== RUN EVALUATION ====================
27
+
28
+ s = SyncNetInstance();
29
+
30
+ s.loadParameters(opt.initial_model);
31
+ #print("Model %s loaded."%opt.initial_model);
32
+ path = os.path.join(opt.data_root, "*.mp4")
33
+
34
+ all_videos = glob.glob(path)
35
+
36
+ prog_bar = tqdm(range(len(all_videos)))
37
+ avg_confidence = 0.
38
+ avg_min_distance = 0.
39
+
40
+
41
+ for videofile_idx in prog_bar:
42
+ videofile = all_videos[videofile_idx]
43
+ offset, confidence, min_distance = s.evaluate(opt, videofile=videofile)
44
+ avg_confidence += confidence
45
+ avg_min_distance += min_distance
46
+ prog_bar.set_description('Avg Confidence: {}, Avg Minimum Dist: {}'.format(round(avg_confidence / (videofile_idx + 1), 3), round(avg_min_distance / (videofile_idx + 1), 3)))
47
+ prog_bar.refresh()
48
+
49
+ print ('Average Confidence: {}'.format(avg_confidence/len(all_videos)))
50
+ print ('Average Minimum Distance: {}'.format(avg_min_distance/len(all_videos)))
51
+
52
+
53
+
evaluation/scores_LSE/calculate_scores_real_videos.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/python
2
+ #-*- coding: utf-8 -*-
3
+
4
+ import time, pdb, argparse, subprocess, pickle, os, gzip, glob
5
+
6
+ from SyncNetInstance_calc_scores import *
7
+
8
+ # ==================== PARSE ARGUMENT ====================
9
+
10
+ parser = argparse.ArgumentParser(description = "SyncNet");
11
+ parser.add_argument('--initial_model', type=str, default="data/syncnet_v2.model", help='');
12
+ parser.add_argument('--batch_size', type=int, default='20', help='');
13
+ parser.add_argument('--vshift', type=int, default='15', help='');
14
+ parser.add_argument('--data_dir', type=str, default='data/work', help='');
15
+ parser.add_argument('--videofile', type=str, default='', help='');
16
+ parser.add_argument('--reference', type=str, default='', help='');
17
+ opt = parser.parse_args();
18
+
19
+ setattr(opt,'avi_dir',os.path.join(opt.data_dir,'pyavi'))
20
+ setattr(opt,'tmp_dir',os.path.join(opt.data_dir,'pytmp'))
21
+ setattr(opt,'work_dir',os.path.join(opt.data_dir,'pywork'))
22
+ setattr(opt,'crop_dir',os.path.join(opt.data_dir,'pycrop'))
23
+
24
+
25
+ # ==================== LOAD MODEL AND FILE LIST ====================
26
+
27
+ s = SyncNetInstance();
28
+
29
+ s.loadParameters(opt.initial_model);
30
+ #print("Model %s loaded."%opt.initial_model);
31
+
32
+ flist = glob.glob(os.path.join(opt.crop_dir,opt.reference,'0*.avi'))
33
+ flist.sort()
34
+
35
+ # ==================== GET OFFSETS ====================
36
+
37
+ dists = []
38
+ for idx, fname in enumerate(flist):
39
+ offset, conf, dist = s.evaluate(opt,videofile=fname)
40
+ print (str(dist)+" "+str(conf))
41
+
42
+ # ==================== PRINT RESULTS TO FILE ====================
43
+
44
+ #with open(os.path.join(opt.work_dir,opt.reference,'activesd.pckl'), 'wb') as fil:
45
+ # pickle.dump(dists, fil)
evaluation/scores_LSE/calculate_scores_real_videos.sh ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ rm all_scores.txt
2
+ yourfilenames=`ls $1`
3
+
4
+ for eachfile in $yourfilenames
5
+ do
6
+ python run_pipeline.py --videofile $1/$eachfile --reference wav2lip --data_dir tmp_dir
7
+ python calculate_scores_real_videos.py --videofile $1/$eachfile --reference wav2lip --data_dir tmp_dir >> all_scores.txt
8
+ done
evaluation/test_filelists/README.md ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ This folder contains the filelists for the new evaluation framework proposed in the paper.
2
+
3
+ ## Test filelists for LRS2, LRS3, and LRW.
4
+
5
+ This folder contains three filelists, each containing a list of names of audio-video pairs from the test sets of LRS2, LRS3, and LRW. The LRS2 and LRW filelists are strictly "Copyright BBC" and can only be used for “non-commercial research by applicants who have an agreement with the BBC to access the Lip Reading in the Wild and/or Lip Reading Sentences in the Wild datasets”. Please follow this link for more details: [https://www.bbc.co.uk/rd/projects/lip-reading-datasets](https://www.bbc.co.uk/rd/projects/lip-reading-datasets).
6
+
7
+
8
+ ## ReSynCED benchmark
9
+
10
+ The sub-folder `ReSynCED` contains filelists for our own Real-world lip-Sync Evaluation Dataset (ReSyncED).
11
+
12
+
13
+ #### Instructions on how to use the above two filelists are available in the README of the parent folder.
evaluation/test_filelists/ReSyncED/random_pairs.txt ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ sachin.mp4 emma_cropped.mp4
2
+ sachin.mp4 mourinho.mp4
3
+ sachin.mp4 elon.mp4
4
+ sachin.mp4 messi2.mp4
5
+ sachin.mp4 cr1.mp4
6
+ sachin.mp4 sachin.mp4
7
+ sachin.mp4 sg.mp4
8
+ sachin.mp4 fergi.mp4
9
+ sachin.mp4 spanish_lec1.mp4
10
+ sachin.mp4 bush_small.mp4
11
+ sachin.mp4 macca_cut.mp4
12
+ sachin.mp4 ca_cropped.mp4
13
+ sachin.mp4 lecun.mp4
14
+ sachin.mp4 spanish_lec0.mp4
15
+ srk.mp4 emma_cropped.mp4
16
+ srk.mp4 mourinho.mp4
17
+ srk.mp4 elon.mp4
18
+ srk.mp4 messi2.mp4
19
+ srk.mp4 cr1.mp4
20
+ srk.mp4 srk.mp4
21
+ srk.mp4 sachin.mp4
22
+ srk.mp4 sg.mp4
23
+ srk.mp4 fergi.mp4
24
+ srk.mp4 spanish_lec1.mp4
25
+ srk.mp4 bush_small.mp4
26
+ srk.mp4 macca_cut.mp4
27
+ srk.mp4 ca_cropped.mp4
28
+ srk.mp4 guardiola.mp4
29
+ srk.mp4 lecun.mp4
30
+ srk.mp4 spanish_lec0.mp4
31
+ cr1.mp4 emma_cropped.mp4
32
+ cr1.mp4 elon.mp4
33
+ cr1.mp4 messi2.mp4
34
+ cr1.mp4 cr1.mp4
35
+ cr1.mp4 spanish_lec1.mp4
36
+ cr1.mp4 bush_small.mp4
37
+ cr1.mp4 macca_cut.mp4
38
+ cr1.mp4 ca_cropped.mp4
39
+ cr1.mp4 lecun.mp4
40
+ cr1.mp4 spanish_lec0.mp4
41
+ macca_cut.mp4 emma_cropped.mp4
42
+ macca_cut.mp4 elon.mp4
43
+ macca_cut.mp4 messi2.mp4
44
+ macca_cut.mp4 spanish_lec1.mp4
45
+ macca_cut.mp4 macca_cut.mp4
46
+ macca_cut.mp4 ca_cropped.mp4
47
+ macca_cut.mp4 spanish_lec0.mp4
48
+ lecun.mp4 emma_cropped.mp4
49
+ lecun.mp4 elon.mp4
50
+ lecun.mp4 messi2.mp4
51
+ lecun.mp4 spanish_lec1.mp4
52
+ lecun.mp4 macca_cut.mp4
53
+ lecun.mp4 ca_cropped.mp4
54
+ lecun.mp4 lecun.mp4
55
+ lecun.mp4 spanish_lec0.mp4
56
+ messi2.mp4 emma_cropped.mp4
57
+ messi2.mp4 elon.mp4
58
+ messi2.mp4 messi2.mp4
59
+ messi2.mp4 spanish_lec1.mp4
60
+ messi2.mp4 macca_cut.mp4
61
+ messi2.mp4 ca_cropped.mp4
62
+ messi2.mp4 spanish_lec0.mp4
63
+ ca_cropped.mp4 emma_cropped.mp4
64
+ ca_cropped.mp4 elon.mp4
65
+ ca_cropped.mp4 spanish_lec1.mp4
66
+ ca_cropped.mp4 ca_cropped.mp4
67
+ ca_cropped.mp4 spanish_lec0.mp4
68
+ spanish_lec1.mp4 spanish_lec1.mp4
69
+ spanish_lec1.mp4 spanish_lec0.mp4
70
+ elon.mp4 elon.mp4
71
+ elon.mp4 spanish_lec1.mp4
72
+ elon.mp4 spanish_lec0.mp4
73
+ guardiola.mp4 emma_cropped.mp4
74
+ guardiola.mp4 mourinho.mp4
75
+ guardiola.mp4 elon.mp4
76
+ guardiola.mp4 messi2.mp4
77
+ guardiola.mp4 cr1.mp4
78
+ guardiola.mp4 sachin.mp4
79
+ guardiola.mp4 sg.mp4
80
+ guardiola.mp4 fergi.mp4
81
+ guardiola.mp4 spanish_lec1.mp4
82
+ guardiola.mp4 bush_small.mp4
83
+ guardiola.mp4 macca_cut.mp4
84
+ guardiola.mp4 ca_cropped.mp4
85
+ guardiola.mp4 guardiola.mp4
86
+ guardiola.mp4 lecun.mp4
87
+ guardiola.mp4 spanish_lec0.mp4
88
+ fergi.mp4 emma_cropped.mp4
89
+ fergi.mp4 mourinho.mp4
90
+ fergi.mp4 elon.mp4
91
+ fergi.mp4 messi2.mp4
92
+ fergi.mp4 cr1.mp4
93
+ fergi.mp4 sachin.mp4
94
+ fergi.mp4 sg.mp4
95
+ fergi.mp4 fergi.mp4
96
+ fergi.mp4 spanish_lec1.mp4
97
+ fergi.mp4 bush_small.mp4
98
+ fergi.mp4 macca_cut.mp4
99
+ fergi.mp4 ca_cropped.mp4
100
+ fergi.mp4 lecun.mp4
101
+ fergi.mp4 spanish_lec0.mp4
102
+ spanish.mp4 emma_cropped.mp4
103
+ spanish.mp4 spanish.mp4
104
+ spanish.mp4 mourinho.mp4
105
+ spanish.mp4 elon.mp4
106
+ spanish.mp4 messi2.mp4
107
+ spanish.mp4 cr1.mp4
108
+ spanish.mp4 srk.mp4
109
+ spanish.mp4 sachin.mp4
110
+ spanish.mp4 sg.mp4
111
+ spanish.mp4 fergi.mp4
112
+ spanish.mp4 spanish_lec1.mp4
113
+ spanish.mp4 bush_small.mp4
114
+ spanish.mp4 macca_cut.mp4
115
+ spanish.mp4 ca_cropped.mp4
116
+ spanish.mp4 guardiola.mp4
117
+ spanish.mp4 lecun.mp4
118
+ spanish.mp4 spanish_lec0.mp4
119
+ bush_small.mp4 emma_cropped.mp4
120
+ bush_small.mp4 elon.mp4
121
+ bush_small.mp4 messi2.mp4
122
+ bush_small.mp4 spanish_lec1.mp4
123
+ bush_small.mp4 bush_small.mp4
124
+ bush_small.mp4 macca_cut.mp4
125
+ bush_small.mp4 ca_cropped.mp4
126
+ bush_small.mp4 lecun.mp4
127
+ bush_small.mp4 spanish_lec0.mp4
128
+ emma_cropped.mp4 emma_cropped.mp4
129
+ emma_cropped.mp4 elon.mp4
130
+ emma_cropped.mp4 spanish_lec1.mp4
131
+ emma_cropped.mp4 spanish_lec0.mp4
132
+ sg.mp4 emma_cropped.mp4
133
+ sg.mp4 mourinho.mp4
134
+ sg.mp4 elon.mp4
135
+ sg.mp4 messi2.mp4
136
+ sg.mp4 cr1.mp4
137
+ sg.mp4 sachin.mp4
138
+ sg.mp4 sg.mp4
139
+ sg.mp4 fergi.mp4
140
+ sg.mp4 spanish_lec1.mp4
141
+ sg.mp4 bush_small.mp4
142
+ sg.mp4 macca_cut.mp4
143
+ sg.mp4 ca_cropped.mp4
144
+ sg.mp4 lecun.mp4
145
+ sg.mp4 spanish_lec0.mp4
146
+ spanish_lec0.mp4 spanish_lec0.mp4
147
+ mourinho.mp4 emma_cropped.mp4
148
+ mourinho.mp4 mourinho.mp4
149
+ mourinho.mp4 elon.mp4
150
+ mourinho.mp4 messi2.mp4
151
+ mourinho.mp4 cr1.mp4
152
+ mourinho.mp4 sachin.mp4
153
+ mourinho.mp4 sg.mp4
154
+ mourinho.mp4 fergi.mp4
155
+ mourinho.mp4 spanish_lec1.mp4
156
+ mourinho.mp4 bush_small.mp4
157
+ mourinho.mp4 macca_cut.mp4
158
+ mourinho.mp4 ca_cropped.mp4
159
+ mourinho.mp4 lecun.mp4
160
+ mourinho.mp4 spanish_lec0.mp4
evaluation/test_filelists/ReSyncED/tts_pairs.txt ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ adam_1.mp4 andreng_optimization.wav
2
+ agad_2.mp4 agad_2.wav
3
+ agad_1.mp4 agad_1.wav
4
+ agad_3.mp4 agad_3.wav
5
+ rms_prop_1.mp4 rms_prop_tts.wav
6
+ tf_1.mp4 tf_1.wav
7
+ tf_2.mp4 tf_2.wav
8
+ andrew_ng_ai_business.mp4 andrewng_business_tts.wav
9
+ covid_autopsy_1.mp4 autopsy_tts.wav
10
+ news_1.mp4 news_tts.wav
11
+ andrew_ng_fund_1.mp4 andrewng_ai_fund.wav
12
+ covid_treatments_1.mp4 covid_tts.wav
13
+ pytorch_v_tf.mp4 pytorch_vs_tf_eng.wav
14
+ pytorch_1.mp4 pytorch.wav
15
+ pkb_1.mp4 pkb_1.wav
16
+ ss_1.mp4 ss_1.wav
17
+ carlsen_1.mp4 carlsen_eng.wav
18
+ french.mp4 french.wav
evaluation/test_filelists/lrs2.txt ADDED
The diff for this file is too large to render. See raw diff
 
evaluation/test_filelists/lrs3.txt ADDED
The diff for this file is too large to render. See raw diff
 
evaluation/test_filelists/lrw.txt ADDED
The diff for this file is too large to render. See raw diff
 
face_detection/README.md ADDED
@@ -0,0 +1 @@
 
 
1
+ The code for Face Detection in this folder has been taken from the wonderful [face_alignment](https://github.com/1adrianb/face-alignment) repository. This has been modified to take batches of faces at a time.
face_detection/__init__.py ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+
3
+ __author__ = """Adrian Bulat"""
4
+ __email__ = '[email protected]'
5
+ __version__ = '1.0.1'
6
+
7
+ from .api import FaceAlignment, LandmarksType, NetworkSize
face_detection/__pycache__/__init__.cpython-36.pyc ADDED
Binary file (330 Bytes). View file
 
face_detection/__pycache__/__init__.cpython-38.pyc ADDED
Binary file (338 Bytes). View file
 
face_detection/__pycache__/__init__.cpython-39.pyc ADDED
Binary file (338 Bytes). View file
 
face_detection/__pycache__/api.cpython-36.pyc ADDED
Binary file (2.7 kB). View file
 
face_detection/__pycache__/api.cpython-38.pyc ADDED
Binary file (2.74 kB). View file
 
face_detection/__pycache__/api.cpython-39.pyc ADDED
Binary file (2.73 kB). View file
 
face_detection/__pycache__/models.cpython-36.pyc ADDED
Binary file (7.13 kB). View file
 
face_detection/__pycache__/models.cpython-38.pyc ADDED
Binary file (7.14 kB). View file
 
face_detection/__pycache__/models.cpython-39.pyc ADDED
Binary file (7.11 kB). View file
 
face_detection/__pycache__/utils.cpython-36.pyc ADDED
Binary file (10.1 kB). View file
 
face_detection/__pycache__/utils.cpython-38.pyc ADDED
Binary file (10.2 kB). View file
 
face_detection/__pycache__/utils.cpython-39.pyc ADDED
Binary file (9.9 kB). View file
 
face_detection/api.py ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import print_function
2
+ import os
3
+ import torch
4
+ from torch.utils.model_zoo import load_url
5
+ from enum import Enum
6
+ import numpy as np
7
+ import cv2
8
+ try:
9
+ import urllib.request as request_file
10
+ except BaseException:
11
+ import urllib as request_file
12
+
13
+ from .models import FAN, ResNetDepth
14
+ from .utils import *
15
+
16
+
17
+ class LandmarksType(Enum):
18
+ """Enum class defining the type of landmarks to detect.
19
+
20
+ ``_2D`` - the detected points ``(x,y)`` are detected in a 2D space and follow the visible contour of the face
21
+ ``_2halfD`` - this points represent the projection of the 3D points into 3D
22
+ ``_3D`` - detect the points ``(x,y,z)``` in a 3D space
23
+
24
+ """
25
+ _2D = 1
26
+ _2halfD = 2
27
+ _3D = 3
28
+
29
+
30
+ class NetworkSize(Enum):
31
+ # TINY = 1
32
+ # SMALL = 2
33
+ # MEDIUM = 3
34
+ LARGE = 4
35
+
36
+ def __new__(cls, value):
37
+ member = object.__new__(cls)
38
+ member._value_ = value
39
+ return member
40
+
41
+ def __int__(self):
42
+ return self.value
43
+
44
+ ROOT = os.path.dirname(os.path.abspath(__file__))
45
+
46
+ class FaceAlignment:
47
+ def __init__(self, landmarks_type, network_size=NetworkSize.LARGE,
48
+ device='cuda', flip_input=False, face_detector='sfd', verbose=False):
49
+ self.device = device
50
+ self.flip_input = flip_input
51
+ self.landmarks_type = landmarks_type
52
+ self.verbose = verbose
53
+
54
+ network_size = int(network_size)
55
+
56
+ if 'cuda' in device:
57
+ torch.backends.cudnn.benchmark = True
58
+
59
+ # Get the face detector
60
+ face_detector_module = __import__('face_detection.detection.' + face_detector,
61
+ globals(), locals(), [face_detector], 0)
62
+ self.face_detector = face_detector_module.FaceDetector(device=device, verbose=verbose)
63
+
64
+ def get_detections_for_batch(self, images):
65
+ images = images[..., ::-1]
66
+ detected_faces = self.face_detector.detect_from_batch(images.copy())
67
+ results = []
68
+
69
+ for i, d in enumerate(detected_faces):
70
+ if len(d) == 0:
71
+ results.append(None)
72
+ continue
73
+ d = d[0]
74
+ d = np.clip(d, 0, None)
75
+
76
+ x1, y1, x2, y2 = map(int, d[:-1])
77
+ results.append((x1, y1, x2, y2))
78
+
79
+ return results
face_detection/detection/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from .core import FaceDetector
face_detection/detection/__pycache__/__init__.cpython-36.pyc ADDED
Binary file (188 Bytes). View file
 
face_detection/detection/__pycache__/__init__.cpython-38.pyc ADDED
Binary file (196 Bytes). View file
 
face_detection/detection/__pycache__/core.cpython-36.pyc ADDED
Binary file (4.86 kB). View file
 
face_detection/detection/__pycache__/core.cpython-38.pyc ADDED
Binary file (4.88 kB). View file
 
face_detection/detection/core.py ADDED
@@ -0,0 +1,130 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ import glob
3
+ from tqdm import tqdm
4
+ import numpy as np
5
+ import torch
6
+ import cv2
7
+
8
+
9
+ class FaceDetector(object):
10
+ """An abstract class representing a face detector.
11
+
12
+ Any other face detection implementation must subclass it. All subclasses
13
+ must implement ``detect_from_image``, that return a list of detected
14
+ bounding boxes. Optionally, for speed considerations detect from path is
15
+ recommended.
16
+ """
17
+
18
+ def __init__(self, device, verbose):
19
+ self.device = device
20
+ self.verbose = verbose
21
+
22
+ if verbose:
23
+ if 'cpu' in device:
24
+ logger = logging.getLogger(__name__)
25
+ logger.warning("Detection running on CPU, this may be potentially slow.")
26
+
27
+ if 'cpu' not in device and 'cuda' not in device:
28
+ if verbose:
29
+ logger.error("Expected values for device are: {cpu, cuda} but got: %s", device)
30
+ raise ValueError
31
+
32
+ def detect_from_image(self, tensor_or_path):
33
+ """Detects faces in a given image.
34
+
35
+ This function detects the faces present in a provided BGR(usually)
36
+ image. The input can be either the image itself or the path to it.
37
+
38
+ Arguments:
39
+ tensor_or_path {numpy.ndarray, torch.tensor or string} -- the path
40
+ to an image or the image itself.
41
+
42
+ Example::
43
+
44
+ >>> path_to_image = 'data/image_01.jpg'
45
+ ... detected_faces = detect_from_image(path_to_image)
46
+ [A list of bounding boxes (x1, y1, x2, y2)]
47
+ >>> image = cv2.imread(path_to_image)
48
+ ... detected_faces = detect_from_image(image)
49
+ [A list of bounding boxes (x1, y1, x2, y2)]
50
+
51
+ """
52
+ raise NotImplementedError
53
+
54
+ def detect_from_directory(self, path, extensions=['.jpg', '.png'], recursive=False, show_progress_bar=True):
55
+ """Detects faces from all the images present in a given directory.
56
+
57
+ Arguments:
58
+ path {string} -- a string containing a path that points to the folder containing the images
59
+
60
+ Keyword Arguments:
61
+ extensions {list} -- list of string containing the extensions to be
62
+ consider in the following format: ``.extension_name`` (default:
63
+ {['.jpg', '.png']}) recursive {bool} -- option wherever to scan the
64
+ folder recursively (default: {False}) show_progress_bar {bool} --
65
+ display a progressbar (default: {True})
66
+
67
+ Example:
68
+ >>> directory = 'data'
69
+ ... detected_faces = detect_from_directory(directory)
70
+ {A dictionary of [lists containing bounding boxes(x1, y1, x2, y2)]}
71
+
72
+ """
73
+ if self.verbose:
74
+ logger = logging.getLogger(__name__)
75
+
76
+ if len(extensions) == 0:
77
+ if self.verbose:
78
+ logger.error("Expected at list one extension, but none was received.")
79
+ raise ValueError
80
+
81
+ if self.verbose:
82
+ logger.info("Constructing the list of images.")
83
+ additional_pattern = '/**/*' if recursive else '/*'
84
+ files = []
85
+ for extension in extensions:
86
+ files.extend(glob.glob(path + additional_pattern + extension, recursive=recursive))
87
+
88
+ if self.verbose:
89
+ logger.info("Finished searching for images. %s images found", len(files))
90
+ logger.info("Preparing to run the detection.")
91
+
92
+ predictions = {}
93
+ for image_path in tqdm(files, disable=not show_progress_bar):
94
+ if self.verbose:
95
+ logger.info("Running the face detector on image: %s", image_path)
96
+ predictions[image_path] = self.detect_from_image(image_path)
97
+
98
+ if self.verbose:
99
+ logger.info("The detector was successfully run on all %s images", len(files))
100
+
101
+ return predictions
102
+
103
+ @property
104
+ def reference_scale(self):
105
+ raise NotImplementedError
106
+
107
+ @property
108
+ def reference_x_shift(self):
109
+ raise NotImplementedError
110
+
111
+ @property
112
+ def reference_y_shift(self):
113
+ raise NotImplementedError
114
+
115
+ @staticmethod
116
+ def tensor_or_path_to_ndarray(tensor_or_path, rgb=True):
117
+ """Convert path (represented as a string) or torch.tensor to a numpy.ndarray
118
+
119
+ Arguments:
120
+ tensor_or_path {numpy.ndarray, torch.tensor or string} -- path to the image, or the image itself
121
+ """
122
+ if isinstance(tensor_or_path, str):
123
+ return cv2.imread(tensor_or_path) if not rgb else cv2.imread(tensor_or_path)[..., ::-1]
124
+ elif torch.is_tensor(tensor_or_path):
125
+ # Call cpu in case its coming from cuda
126
+ return tensor_or_path.cpu().numpy()[..., ::-1].copy() if not rgb else tensor_or_path.cpu().numpy()
127
+ elif isinstance(tensor_or_path, np.ndarray):
128
+ return tensor_or_path[..., ::-1].copy() if not rgb else tensor_or_path
129
+ else:
130
+ raise TypeError
face_detection/detection/sfd/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from .sfd_detector import SFDDetector as FaceDetector
face_detection/detection/sfd/__pycache__/__init__.cpython-36.pyc ADDED
Binary file (213 Bytes). View file
 
face_detection/detection/sfd/__pycache__/__init__.cpython-38.pyc ADDED
Binary file (221 Bytes). View file
 
face_detection/detection/sfd/__pycache__/bbox.cpython-36.pyc ADDED
Binary file (4.66 kB). View file
 
face_detection/detection/sfd/__pycache__/bbox.cpython-38.pyc ADDED
Binary file (4.22 kB). View file
 
face_detection/detection/sfd/__pycache__/detect.cpython-36.pyc ADDED
Binary file (3.76 kB). View file
 
face_detection/detection/sfd/__pycache__/detect.cpython-38.pyc ADDED
Binary file (3.74 kB). View file
 
face_detection/detection/sfd/__pycache__/net_s3fd.cpython-36.pyc ADDED
Binary file (3.87 kB). View file
 
face_detection/detection/sfd/__pycache__/net_s3fd.cpython-38.pyc ADDED
Binary file (3.87 kB). View file
 
face_detection/detection/sfd/__pycache__/sfd_detector.cpython-36.pyc ADDED
Binary file (2.95 kB). View file
 
face_detection/detection/sfd/__pycache__/sfd_detector.cpython-38.pyc ADDED
Binary file (2.98 kB). View file
 
face_detection/detection/sfd/bbox.py ADDED
@@ -0,0 +1,129 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import print_function
2
+ import os
3
+ import sys
4
+ import cv2
5
+ import random
6
+ import datetime
7
+ import time
8
+ import math
9
+ import argparse
10
+ import numpy as np
11
+ import torch
12
+
13
+ try:
14
+ from iou import IOU
15
+ except BaseException:
16
+ # IOU cython speedup 10x
17
+ def IOU(ax1, ay1, ax2, ay2, bx1, by1, bx2, by2):
18
+ sa = abs((ax2 - ax1) * (ay2 - ay1))
19
+ sb = abs((bx2 - bx1) * (by2 - by1))
20
+ x1, y1 = max(ax1, bx1), max(ay1, by1)
21
+ x2, y2 = min(ax2, bx2), min(ay2, by2)
22
+ w = x2 - x1
23
+ h = y2 - y1
24
+ if w < 0 or h < 0:
25
+ return 0.0
26
+ else:
27
+ return 1.0 * w * h / (sa + sb - w * h)
28
+
29
+
30
+ def bboxlog(x1, y1, x2, y2, axc, ayc, aww, ahh):
31
+ xc, yc, ww, hh = (x2 + x1) / 2, (y2 + y1) / 2, x2 - x1, y2 - y1
32
+ dx, dy = (xc - axc) / aww, (yc - ayc) / ahh
33
+ dw, dh = math.log(ww / aww), math.log(hh / ahh)
34
+ return dx, dy, dw, dh
35
+
36
+
37
+ def bboxloginv(dx, dy, dw, dh, axc, ayc, aww, ahh):
38
+ xc, yc = dx * aww + axc, dy * ahh + ayc
39
+ ww, hh = math.exp(dw) * aww, math.exp(dh) * ahh
40
+ x1, x2, y1, y2 = xc - ww / 2, xc + ww / 2, yc - hh / 2, yc + hh / 2
41
+ return x1, y1, x2, y2
42
+
43
+
44
+ def nms(dets, thresh):
45
+ if 0 == len(dets):
46
+ return []
47
+ x1, y1, x2, y2, scores = dets[:, 0], dets[:, 1], dets[:, 2], dets[:, 3], dets[:, 4]
48
+ areas = (x2 - x1 + 1) * (y2 - y1 + 1)
49
+ order = scores.argsort()[::-1]
50
+
51
+ keep = []
52
+ while order.size > 0:
53
+ i = order[0]
54
+ keep.append(i)
55
+ xx1, yy1 = np.maximum(x1[i], x1[order[1:]]), np.maximum(y1[i], y1[order[1:]])
56
+ xx2, yy2 = np.minimum(x2[i], x2[order[1:]]), np.minimum(y2[i], y2[order[1:]])
57
+
58
+ w, h = np.maximum(0.0, xx2 - xx1 + 1), np.maximum(0.0, yy2 - yy1 + 1)
59
+ ovr = w * h / (areas[i] + areas[order[1:]] - w * h)
60
+
61
+ inds = np.where(ovr <= thresh)[0]
62
+ order = order[inds + 1]
63
+
64
+ return keep
65
+
66
+
67
+ def encode(matched, priors, variances):
68
+ """Encode the variances from the priorbox layers into the ground truth boxes
69
+ we have matched (based on jaccard overlap) with the prior boxes.
70
+ Args:
71
+ matched: (tensor) Coords of ground truth for each prior in point-form
72
+ Shape: [num_priors, 4].
73
+ priors: (tensor) Prior boxes in center-offset form
74
+ Shape: [num_priors,4].
75
+ variances: (list[float]) Variances of priorboxes
76
+ Return:
77
+ encoded boxes (tensor), Shape: [num_priors, 4]
78
+ """
79
+
80
+ # dist b/t match center and prior's center
81
+ g_cxcy = (matched[:, :2] + matched[:, 2:]) / 2 - priors[:, :2]
82
+ # encode variance
83
+ g_cxcy /= (variances[0] * priors[:, 2:])
84
+ # match wh / prior wh
85
+ g_wh = (matched[:, 2:] - matched[:, :2]) / priors[:, 2:]
86
+ g_wh = torch.log(g_wh) / variances[1]
87
+ # return target for smooth_l1_loss
88
+ return torch.cat([g_cxcy, g_wh], 1) # [num_priors,4]
89
+
90
+
91
+ def decode(loc, priors, variances):
92
+ """Decode locations from predictions using priors to undo
93
+ the encoding we did for offset regression at train time.
94
+ Args:
95
+ loc (tensor): location predictions for loc layers,
96
+ Shape: [num_priors,4]
97
+ priors (tensor): Prior boxes in center-offset form.
98
+ Shape: [num_priors,4].
99
+ variances: (list[float]) Variances of priorboxes
100
+ Return:
101
+ decoded bounding box predictions
102
+ """
103
+
104
+ boxes = torch.cat((
105
+ priors[:, :2] + loc[:, :2] * variances[0] * priors[:, 2:],
106
+ priors[:, 2:] * torch.exp(loc[:, 2:] * variances[1])), 1)
107
+ boxes[:, :2] -= boxes[:, 2:] / 2
108
+ boxes[:, 2:] += boxes[:, :2]
109
+ return boxes
110
+
111
+ def batch_decode(loc, priors, variances):
112
+ """Decode locations from predictions using priors to undo
113
+ the encoding we did for offset regression at train time.
114
+ Args:
115
+ loc (tensor): location predictions for loc layers,
116
+ Shape: [num_priors,4]
117
+ priors (tensor): Prior boxes in center-offset form.
118
+ Shape: [num_priors,4].
119
+ variances: (list[float]) Variances of priorboxes
120
+ Return:
121
+ decoded bounding box predictions
122
+ """
123
+
124
+ boxes = torch.cat((
125
+ priors[:, :, :2] + loc[:, :, :2] * variances[0] * priors[:, :, 2:],
126
+ priors[:, :, 2:] * torch.exp(loc[:, :, 2:] * variances[1])), 2)
127
+ boxes[:, :, :2] -= boxes[:, :, 2:] / 2
128
+ boxes[:, :, 2:] += boxes[:, :, :2]
129
+ return boxes