Spaces:
Sleeping
Sleeping
Abdulla Fahem
commited on
Commit
Β·
7bdf2e1
1
Parent(s):
0875154
Add application file
Browse files- app.py +455 -0
- requirements.txt +18 -0
- setup.sh +40 -0
app.py
ADDED
@@ -0,0 +1,455 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import torch
|
4 |
+
import pandas as pd
|
5 |
+
import streamlit as st
|
6 |
+
from datetime import datetime
|
7 |
+
from transformers import (
|
8 |
+
T5ForConditionalGeneration,
|
9 |
+
T5Tokenizer,
|
10 |
+
Trainer,
|
11 |
+
TrainingArguments,
|
12 |
+
DataCollatorForSeq2Seq
|
13 |
+
)
|
14 |
+
from torch.utils.data import Dataset
|
15 |
+
import random
|
16 |
+
|
17 |
+
# Ensure reproducibility
|
18 |
+
torch.manual_seed(42)
|
19 |
+
random.seed(42)
|
20 |
+
|
21 |
+
# Environment setup
|
22 |
+
os.environ['KMP_DUPLICATE_LIB_OK']='TRUE'
|
23 |
+
|
24 |
+
class TravelDataset(Dataset):
|
25 |
+
def __init__(self, data, tokenizer, max_length=512):
|
26 |
+
"""
|
27 |
+
Initialize the dataset for travel planning
|
28 |
+
|
29 |
+
Parameters:
|
30 |
+
- data: DataFrame containing travel planning data
|
31 |
+
- tokenizer: Tokenizer for encoding input and output
|
32 |
+
- max_length: Maximum sequence length
|
33 |
+
"""
|
34 |
+
self.tokenizer = tokenizer
|
35 |
+
self.data = data
|
36 |
+
self.max_length = max_length
|
37 |
+
|
38 |
+
# Print dataset information
|
39 |
+
print(f"Dataset loaded with {len(data)} samples")
|
40 |
+
print("Columns:", list(data.columns))
|
41 |
+
|
42 |
+
def __len__(self):
|
43 |
+
return len(self.data)
|
44 |
+
|
45 |
+
def __getitem__(self, idx):
|
46 |
+
"""
|
47 |
+
Prepare an individual training sample
|
48 |
+
|
49 |
+
Returns a dictionary with input_ids, attention_mask, and labels
|
50 |
+
"""
|
51 |
+
row = self.data.iloc[idx]
|
52 |
+
|
53 |
+
# Prepare input text
|
54 |
+
input_text = self.format_input_text(row)
|
55 |
+
|
56 |
+
# Prepare target text (travel plan)
|
57 |
+
target_text = row['target']
|
58 |
+
|
59 |
+
# Tokenize inputs
|
60 |
+
input_encodings = self.tokenizer(
|
61 |
+
input_text,
|
62 |
+
max_length=self.max_length,
|
63 |
+
padding='max_length',
|
64 |
+
truncation=True,
|
65 |
+
return_tensors='pt'
|
66 |
+
)
|
67 |
+
|
68 |
+
# Tokenize targets
|
69 |
+
target_encodings = self.tokenizer(
|
70 |
+
target_text,
|
71 |
+
max_length=self.max_length,
|
72 |
+
padding='max_length',
|
73 |
+
truncation=True,
|
74 |
+
return_tensors='pt'
|
75 |
+
)
|
76 |
+
|
77 |
+
return {
|
78 |
+
'input_ids': input_encodings['input_ids'].squeeze(),
|
79 |
+
'attention_mask': input_encodings['attention_mask'].squeeze(),
|
80 |
+
'labels': target_encodings['input_ids'].squeeze()
|
81 |
+
}
|
82 |
+
|
83 |
+
@staticmethod
|
84 |
+
def format_input_text(row):
|
85 |
+
"""
|
86 |
+
Format input text for the model
|
87 |
+
|
88 |
+
This method creates a prompt that the model will use to generate a travel plan
|
89 |
+
"""
|
90 |
+
# Format the input text based on available columns
|
91 |
+
destination = row.get('destination', 'Unknown')
|
92 |
+
days = row.get('days', 3)
|
93 |
+
budget = row.get('budget', 'Moderate')
|
94 |
+
interests = row.get('interests', 'Culture, Food')
|
95 |
+
|
96 |
+
return f"Plan a trip to {destination} for {days} days with a {budget} budget. Include activities related to: {interests}"
|
97 |
+
|
98 |
+
def load_dataset():
|
99 |
+
"""
|
100 |
+
Load the travel planning dataset from HuggingFace
|
101 |
+
|
102 |
+
Returns:
|
103 |
+
- pandas DataFrame with the dataset
|
104 |
+
"""
|
105 |
+
try:
|
106 |
+
# Load dataset from CSV
|
107 |
+
data = pd.read_csv("hf://datasets/osunlp/TravelPlanner/train.csv")
|
108 |
+
|
109 |
+
# Basic data validation
|
110 |
+
required_columns = ['destination', 'days', 'budget', 'interests', 'target']
|
111 |
+
for col in required_columns:
|
112 |
+
if col not in data.columns:
|
113 |
+
raise ValueError(f"Missing required column: {col}")
|
114 |
+
|
115 |
+
# Print dataset info
|
116 |
+
print("Dataset successfully loaded")
|
117 |
+
print(f"Total samples: {len(data)}")
|
118 |
+
print("Columns:", list(data.columns))
|
119 |
+
|
120 |
+
return data
|
121 |
+
except Exception as e:
|
122 |
+
print(f"Error loading dataset: {e}")
|
123 |
+
sys.exit(1)
|
124 |
+
|
125 |
+
def train_model():
|
126 |
+
"""
|
127 |
+
Train the T5 model for travel planning
|
128 |
+
|
129 |
+
Returns:
|
130 |
+
- Trained model
|
131 |
+
- Tokenizer
|
132 |
+
"""
|
133 |
+
try:
|
134 |
+
# Load dataset
|
135 |
+
data = load_dataset()
|
136 |
+
|
137 |
+
# Initialize model and tokenizer
|
138 |
+
print("Initializing T5 model and tokenizer...")
|
139 |
+
tokenizer = T5Tokenizer.from_pretrained('t5-base', legacy=False)
|
140 |
+
model = T5ForConditionalGeneration.from_pretrained('t5-base')
|
141 |
+
|
142 |
+
# Split data into training and validation sets
|
143 |
+
train_size = int(0.8 * len(data))
|
144 |
+
train_data = data[:train_size]
|
145 |
+
val_data = data[train_size:]
|
146 |
+
|
147 |
+
print(f"Training set size: {len(train_data)}")
|
148 |
+
print(f"Validation set size: {len(val_data)}")
|
149 |
+
|
150 |
+
# Create datasets
|
151 |
+
train_dataset = TravelDataset(train_data, tokenizer)
|
152 |
+
val_dataset = TravelDataset(val_data, tokenizer)
|
153 |
+
|
154 |
+
# Training arguments
|
155 |
+
training_args = TrainingArguments(
|
156 |
+
output_dir=f"./travel_planner_model_{datetime.now().strftime('%Y%m%d_%H%M%S')}",
|
157 |
+
num_train_epochs=3,
|
158 |
+
per_device_train_batch_size=4,
|
159 |
+
per_device_eval_batch_size=4,
|
160 |
+
warmup_steps=500,
|
161 |
+
weight_decay=0.01,
|
162 |
+
logging_dir="./logs",
|
163 |
+
logging_steps=10,
|
164 |
+
evaluation_strategy="steps",
|
165 |
+
eval_steps=50,
|
166 |
+
save_steps=100,
|
167 |
+
load_best_model_at_end=True,
|
168 |
+
)
|
169 |
+
|
170 |
+
# Data collator
|
171 |
+
data_collator = DataCollatorForSeq2Seq(
|
172 |
+
tokenizer=tokenizer,
|
173 |
+
model=model,
|
174 |
+
padding=True
|
175 |
+
)
|
176 |
+
|
177 |
+
# Initialize trainer
|
178 |
+
trainer = Trainer(
|
179 |
+
model=model,
|
180 |
+
args=training_args,
|
181 |
+
train_dataset=train_dataset,
|
182 |
+
eval_dataset=val_dataset,
|
183 |
+
data_collator=data_collator,
|
184 |
+
)
|
185 |
+
|
186 |
+
# Train the model
|
187 |
+
print("Starting model training...")
|
188 |
+
trainer.train()
|
189 |
+
|
190 |
+
# Save the model and tokenizer
|
191 |
+
model_path = "./trained_travel_planner"
|
192 |
+
model.save_pretrained(model_path)
|
193 |
+
tokenizer.save_pretrained(model_path)
|
194 |
+
|
195 |
+
print("Model training completed and saved!")
|
196 |
+
return model, tokenizer
|
197 |
+
|
198 |
+
except Exception as e:
|
199 |
+
print(f"Error during model training: {str(e)}")
|
200 |
+
return None, None
|
201 |
+
|
202 |
+
def generate_travel_plan(destination, days, interests, budget, model, tokenizer):
|
203 |
+
"""
|
204 |
+
Generate a travel plan using the trained model
|
205 |
+
|
206 |
+
Parameters:
|
207 |
+
- destination: Travel destination
|
208 |
+
- days: Trip duration
|
209 |
+
- interests: User's interests
|
210 |
+
- budget: Trip budget level
|
211 |
+
- model: Trained T5 model
|
212 |
+
- tokenizer: Model tokenizer
|
213 |
+
|
214 |
+
Returns:
|
215 |
+
- Generated travel plan
|
216 |
+
"""
|
217 |
+
try:
|
218 |
+
# Format input prompt
|
219 |
+
prompt = f"Plan a trip to {destination} for {days} days with a {budget} budget. Include activities related to: {', '.join(interests)}"
|
220 |
+
|
221 |
+
# Tokenize input
|
222 |
+
inputs = tokenizer(
|
223 |
+
prompt,
|
224 |
+
return_tensors="pt",
|
225 |
+
max_length=512,
|
226 |
+
padding="max_length",
|
227 |
+
truncation=True
|
228 |
+
)
|
229 |
+
|
230 |
+
# Move to GPU if available
|
231 |
+
if torch.cuda.is_available():
|
232 |
+
inputs = {k: v.cuda() for k, v in inputs.items()}
|
233 |
+
model = model.cuda()
|
234 |
+
|
235 |
+
# Generate output
|
236 |
+
outputs = model.generate(
|
237 |
+
**inputs,
|
238 |
+
max_length=512,
|
239 |
+
num_beams=4,
|
240 |
+
no_repeat_ngram_size=3,
|
241 |
+
num_return_sequences=1
|
242 |
+
)
|
243 |
+
|
244 |
+
# Decode and return the travel plan
|
245 |
+
travel_plan = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
246 |
+
return travel_plan
|
247 |
+
|
248 |
+
except Exception as e:
|
249 |
+
print(f"Error generating travel plan: {e}")
|
250 |
+
return "Could not generate travel plan."
|
251 |
+
|
252 |
+
def main():
|
253 |
+
st.set_page_config(
|
254 |
+
page_title="AI Travel Planner",
|
255 |
+
page_icon="βοΈ",
|
256 |
+
layout="wide"
|
257 |
+
)
|
258 |
+
|
259 |
+
st.title("βοΈ AI Travel Planner")
|
260 |
+
st.markdown("### Plan your perfect trip with AI assistance!")
|
261 |
+
|
262 |
+
# Add training button in sidebar only
|
263 |
+
with st.sidebar:
|
264 |
+
st.header("Model Management")
|
265 |
+
if st.button("Retrain Model"):
|
266 |
+
with st.spinner("Training new model... This will take a while..."):
|
267 |
+
model, tokenizer = train_model()
|
268 |
+
if model is not None:
|
269 |
+
st.session_state['model'] = model
|
270 |
+
st.session_state['tokenizer'] = tokenizer
|
271 |
+
st.success("Model training completed!")
|
272 |
+
|
273 |
+
# Add model information
|
274 |
+
st.markdown("### Model Information")
|
275 |
+
if 'model' in st.session_state:
|
276 |
+
st.success("β Model loaded")
|
277 |
+
st.info("""
|
278 |
+
This model was trained on travel plans for:
|
279 |
+
- Destinations from HuggingFace dataset
|
280 |
+
- Flexible days duration
|
281 |
+
- Multiple budget levels
|
282 |
+
- Various interest combinations
|
283 |
+
""")
|
284 |
+
|
285 |
+
# Load or train model
|
286 |
+
if 'model' not in st.session_state:
|
287 |
+
with st.spinner("Loading AI model... Please wait..."):
|
288 |
+
model, tokenizer = train_model() # Changed from load_or_train_model
|
289 |
+
if model is None or tokenizer is None:
|
290 |
+
st.error("Failed to load/train the AI model. Please try again.")
|
291 |
+
return
|
292 |
+
st.session_state.model = model
|
293 |
+
st.session_state.tokenizer = tokenizer
|
294 |
+
|
295 |
+
# Create two columns for input form
|
296 |
+
col1, col2 = st.columns([2, 1])
|
297 |
+
|
298 |
+
with col1:
|
299 |
+
# Input form in a card-like container
|
300 |
+
with st.container():
|
301 |
+
st.markdown("### π― Plan Your Trip")
|
302 |
+
|
303 |
+
# Destination and Duration row
|
304 |
+
dest_col, days_col = st.columns(2)
|
305 |
+
with dest_col:
|
306 |
+
destination = st.text_input(
|
307 |
+
"π Destination",
|
308 |
+
placeholder="e.g., Paris, Tokyo, New York...",
|
309 |
+
help="Enter the city you want to visit"
|
310 |
+
)
|
311 |
+
|
312 |
+
with days_col:
|
313 |
+
days = st.slider(
|
314 |
+
"π
Number of days",
|
315 |
+
min_value=1,
|
316 |
+
max_value=14,
|
317 |
+
value=3,
|
318 |
+
help="Select the duration of your trip"
|
319 |
+
)
|
320 |
+
|
321 |
+
# Budget and Interests row
|
322 |
+
budget_col, interests_col = st.columns(2)
|
323 |
+
with budget_col:
|
324 |
+
budget = st.selectbox(
|
325 |
+
"π° Budget Level",
|
326 |
+
["Budget", "Moderate", "Luxury"],
|
327 |
+
help="Select your preferred budget level"
|
328 |
+
)
|
329 |
+
|
330 |
+
with interests_col:
|
331 |
+
interests = st.multiselect(
|
332 |
+
"π― Interests",
|
333 |
+
["Culture", "History", "Food", "Nature", "Shopping",
|
334 |
+
"Adventure", "Relaxation", "Art", "Museums"],
|
335 |
+
["Culture", "Food"],
|
336 |
+
help="Select up to three interests to personalize your plan"
|
337 |
+
)
|
338 |
+
|
339 |
+
with col2:
|
340 |
+
# Tips and information
|
341 |
+
st.markdown("### π‘ Travel Tips")
|
342 |
+
st.info("""
|
343 |
+
- Choose up to 3 interests for best results
|
344 |
+
- Consider your travel season
|
345 |
+
- Budget levels affect activity suggestions
|
346 |
+
- Plans are customizable after generation
|
347 |
+
""")
|
348 |
+
|
349 |
+
# Generate button centered
|
350 |
+
col1, col2, col3 = st.columns([1, 2, 1])
|
351 |
+
with col2:
|
352 |
+
generate_button = st.button(
|
353 |
+
"π¨ Generate Travel Plan",
|
354 |
+
type="primary",
|
355 |
+
use_container_width=True
|
356 |
+
)
|
357 |
+
|
358 |
+
if generate_button:
|
359 |
+
if not destination:
|
360 |
+
st.error("Please enter a destination!")
|
361 |
+
return
|
362 |
+
|
363 |
+
if not interests:
|
364 |
+
st.error("Please select at least one interest!")
|
365 |
+
return
|
366 |
+
|
367 |
+
if len(interests) > 3:
|
368 |
+
st.warning("For best results, please select up to 3 interests.")
|
369 |
+
|
370 |
+
with st.spinner("π€ Creating your personalized travel plan..."):
|
371 |
+
travel_plan = generate_travel_plan(
|
372 |
+
destination,
|
373 |
+
days,
|
374 |
+
interests,
|
375 |
+
budget,
|
376 |
+
st.session_state.model,
|
377 |
+
st.session_state.tokenizer
|
378 |
+
)
|
379 |
+
|
380 |
+
# Create an expander for the success message with trip overview
|
381 |
+
with st.expander("β¨ Your travel plan is ready! Click to see trip overview", expanded=True):
|
382 |
+
col1, col2, col3 = st.columns(3)
|
383 |
+
with col1:
|
384 |
+
st.metric("Destination", destination)
|
385 |
+
with col2:
|
386 |
+
if days == 1:
|
387 |
+
st.metric("Duration", f"{days} day")
|
388 |
+
else:
|
389 |
+
st.metric("Duration", f"{days} days")
|
390 |
+
with col3:
|
391 |
+
st.metric("Budget", budget)
|
392 |
+
|
393 |
+
st.write("**Selected Interests:**", ", ".join(interests))
|
394 |
+
|
395 |
+
# Display the plan in tabs with improved styling
|
396 |
+
plan_tab, summary_tab = st.tabs(["π Detailed Itinerary", "βΉοΈ Trip Summary"])
|
397 |
+
|
398 |
+
with plan_tab:
|
399 |
+
# Add a container for better spacing
|
400 |
+
with st.container():
|
401 |
+
# Add trip title
|
402 |
+
st.markdown(f"## π {days}-Day Trip to {destination}")
|
403 |
+
st.markdown("---")
|
404 |
+
|
405 |
+
# Display the formatted plan
|
406 |
+
st.markdown(travel_plan)
|
407 |
+
|
408 |
+
# Add export options in a nice container
|
409 |
+
with st.container():
|
410 |
+
st.markdown("---")
|
411 |
+
col1, col2 = st.columns([1, 4])
|
412 |
+
with col1:
|
413 |
+
st.download_button(
|
414 |
+
label="π₯ Download Plan",
|
415 |
+
data=travel_plan,
|
416 |
+
file_name=f"travel_plan_{destination.lower().replace(' ', '_')}.md",
|
417 |
+
mime="text/markdown",
|
418 |
+
use_container_width=True
|
419 |
+
)
|
420 |
+
|
421 |
+
with summary_tab:
|
422 |
+
# Create three columns for summary information with cards
|
423 |
+
with st.container():
|
424 |
+
st.markdown("## Trip Overview")
|
425 |
+
sum_col1, sum_col2, sum_col3 = st.columns(3)
|
426 |
+
|
427 |
+
with sum_col1:
|
428 |
+
with st.container():
|
429 |
+
st.markdown("### π Destination Details")
|
430 |
+
st.markdown(f"**Location:** {destination}")
|
431 |
+
if days == 1:
|
432 |
+
st.markdown(f"**Duration:** {days} day")
|
433 |
+
else:
|
434 |
+
st.markdown(f"**Duration:** {days} days")
|
435 |
+
st.markdown(f"**Budget Level:** {budget}")
|
436 |
+
|
437 |
+
with sum_col2:
|
438 |
+
with st.container():
|
439 |
+
st.markdown("### π― Trip Focus")
|
440 |
+
st.markdown("**Selected Interests:**")
|
441 |
+
for interest in interests:
|
442 |
+
st.markdown(f"- {interest}")
|
443 |
+
|
444 |
+
with sum_col3:
|
445 |
+
with st.container():
|
446 |
+
st.markdown("### β οΈ Travel Tips")
|
447 |
+
st.info(
|
448 |
+
"β’ Verify opening hours\n"
|
449 |
+
"β’ Check current prices\n"
|
450 |
+
"β’ Confirm availability\n"
|
451 |
+
"β’ Consider seasonal factors"
|
452 |
+
)
|
453 |
+
|
454 |
+
if __name__ == "__main__":
|
455 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Core Python Libraries
|
2 |
+
pandas
|
3 |
+
numpy
|
4 |
+
|
5 |
+
# Machine Learning and Deep Learning
|
6 |
+
torch
|
7 |
+
transformers
|
8 |
+
datasets
|
9 |
+
|
10 |
+
# Web Framework
|
11 |
+
streamlit
|
12 |
+
|
13 |
+
# Additional dependencies
|
14 |
+
accelerate
|
15 |
+
protobuf
|
16 |
+
|
17 |
+
# Development and Debugging
|
18 |
+
typing-extensions
|
setup.sh
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
# Update package lists
|
4 |
+
apt-get update && apt-get upgrade -y
|
5 |
+
|
6 |
+
# Install Python and pip
|
7 |
+
apt-get install -y python3 python3-pip python3-venv
|
8 |
+
|
9 |
+
# Create a virtual environment
|
10 |
+
python3 -m venv venv
|
11 |
+
source venv/bin/activate
|
12 |
+
|
13 |
+
# Upgrade pip and setuptools
|
14 |
+
pip install --upgrade pip setuptools wheel
|
15 |
+
|
16 |
+
# Install GPU-related dependencies (optional, commented out by default)
|
17 |
+
# Uncomment if you're using a GPU-enabled space
|
18 |
+
# pip install nvidia-cuda-nvrtc-cu11 nvidia-cuda-runtime-cu11 nvidia-cuda-cupti-cu11
|
19 |
+
|
20 |
+
# Install core Python libraries
|
21 |
+
pip install pandas==2.2.1 \
|
22 |
+
numpy==1.26.3
|
23 |
+
|
24 |
+
# Install Machine Learning and Deep Learning libraries
|
25 |
+
pip install torch==2.2.1 \
|
26 |
+
transformers==4.38.1 \
|
27 |
+
datasets==2.17.1 \
|
28 |
+
accelerate==0.26.1
|
29 |
+
|
30 |
+
# Install Web Framework
|
31 |
+
pip install streamlit==1.31.1
|
32 |
+
|
33 |
+
# Install additional dependencies
|
34 |
+
pip install protobuf==4.25.3 \
|
35 |
+
typing-extensions==4.10.0
|
36 |
+
|
37 |
+
# Optional: Verify installations
|
38 |
+
pip list
|
39 |
+
|
40 |
+
echo "Setup complete! Virtual environment is activated and all dependencies are installed."
|