Spaces:
Sleeping
Sleeping
Commit
·
4711b94
1
Parent(s):
5102abc
feat(app.py): init commit
Browse files- README.md +29 -0
- app.py +265 -0
- screenshot.png +0 -0
README.md
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YouTube Video Transcriber
|
2 |
+
|
3 |
+
A Streamlit app that transcribes YouTube videos using Whisper.
|
4 |
+
|
5 |
+
## How it works
|
6 |
+
|
7 |
+
- Downloads audio from YouTube videos.
|
8 |
+
- Splits audio into speech segments using Silero VAD.
|
9 |
+
- Transcribes segments in batches using OpenAI's Whisper model.
|
10 |
+
- Displays transcribed text with timestamps.
|
11 |
+
|
12 |
+
## Requirements
|
13 |
+
|
14 |
+
Listed in `requirements.txt`
|
15 |
+
|
16 |
+
## Usage
|
17 |
+
|
18 |
+
1. Install dependencies: `pip install -r requirements.txt`
|
19 |
+
2. Run the app: `streamlit run app.py`
|
20 |
+
3. Enter a YouTube video URL and optional language code.
|
21 |
+
4. Click "Transcribe".
|
22 |
+
|
23 |
+
## Screenshot
|
24 |
+
|
25 |
+
![Screenshot](screenshot.png)
|
26 |
+
|
27 |
+
## License
|
28 |
+
|
29 |
+
MIT
|
app.py
ADDED
@@ -0,0 +1,265 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
import streamlit as st
|
3 |
+
import io
|
4 |
+
import os
|
5 |
+
from transformers import pipeline
|
6 |
+
import torch
|
7 |
+
import yt_dlp
|
8 |
+
from silero_vad import load_silero_vad, get_speech_timestamps
|
9 |
+
import numpy as np
|
10 |
+
import pydub
|
11 |
+
|
12 |
+
VAD_SENSITIVITY = 0.1
|
13 |
+
|
14 |
+
# --- Model Loading and Caching ---
|
15 |
+
@st.cache_resource
|
16 |
+
def load_transcriber(_device):
|
17 |
+
transcriber = pipeline(model="openai/whisper-large-v3-turbo", device=_device)
|
18 |
+
return transcriber
|
19 |
+
|
20 |
+
@st.cache_resource
|
21 |
+
def load_vad_model():
|
22 |
+
return load_silero_vad()
|
23 |
+
|
24 |
+
# --- Audio Processing Functions ---
|
25 |
+
@st.cache_resource
|
26 |
+
def download_and_convert_audio(video_url):
|
27 |
+
status_message = st.empty()
|
28 |
+
status_message.text("Downloading audio...")
|
29 |
+
try:
|
30 |
+
ydl_opts = {
|
31 |
+
'format': 'bestaudio/best',
|
32 |
+
'postprocessors': [{
|
33 |
+
'key': 'FFmpegExtractAudio',
|
34 |
+
'preferredcodec': 'wav',
|
35 |
+
'preferredquality': '192',
|
36 |
+
}],
|
37 |
+
'outtmpl': '%(id)s.%(ext)s',
|
38 |
+
}
|
39 |
+
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
40 |
+
info = ydl.extract_info(video_url, download=False)
|
41 |
+
video_id = info['id']
|
42 |
+
filename = f"{video_id}.wav"
|
43 |
+
ydl.download([video_url])
|
44 |
+
status_message.text("Audio downloaded and converted.")
|
45 |
+
|
46 |
+
# Read the file and return its contents
|
47 |
+
with open(filename, 'rb') as audio_file:
|
48 |
+
audio_bytes = audio_file.read()
|
49 |
+
|
50 |
+
# Clean up the temporary file
|
51 |
+
os.remove(filename)
|
52 |
+
|
53 |
+
return audio_bytes, 'wav'
|
54 |
+
except Exception as e:
|
55 |
+
st.error(f"Error during download or conversion: {e}")
|
56 |
+
return None, None
|
57 |
+
|
58 |
+
def aggregate_speech_segments(speech_timestamps, max_duration=30):
|
59 |
+
"""Aggregates speech segments into chunks with a maximum duration,
|
60 |
+
merging the last segment if it's contained within the second-to-last.
|
61 |
+
|
62 |
+
Args:
|
63 |
+
speech_timestamps: A list of dictionaries, where each dictionary represents
|
64 |
+
a speech segment with 'start' and 'end' timestamps
|
65 |
+
(in seconds).
|
66 |
+
max_duration: The maximum desired duration of each aggregated segment
|
67 |
+
(in seconds). Defaults to 30.
|
68 |
+
|
69 |
+
Returns:
|
70 |
+
A list of dictionaries, where each dictionary represents an aggregated
|
71 |
+
speech segment with 'start' and 'end' timestamps.
|
72 |
+
"""
|
73 |
+
|
74 |
+
if not speech_timestamps:
|
75 |
+
return []
|
76 |
+
|
77 |
+
aggregated_segments = []
|
78 |
+
current_segment_start = speech_timestamps[0]['start']
|
79 |
+
current_segment_end = speech_timestamps[0]['end']
|
80 |
+
|
81 |
+
for segment in speech_timestamps[1:]:
|
82 |
+
if segment['start'] - current_segment_start >= max_duration:
|
83 |
+
# Start a new segment if the current duration exceeds max_duration
|
84 |
+
aggregated_segments.append({'start': current_segment_start, 'end': current_segment_end})
|
85 |
+
current_segment_start = segment['start']
|
86 |
+
current_segment_end = segment['end']
|
87 |
+
else:
|
88 |
+
# Extend the current segment
|
89 |
+
current_segment_end = segment['end']
|
90 |
+
|
91 |
+
# Add the last segment, checking for redundancy
|
92 |
+
last_segment = {'start': current_segment_start, 'end': current_segment_end}
|
93 |
+
if aggregated_segments:
|
94 |
+
second_last_segment = aggregated_segments[-1]
|
95 |
+
if last_segment['start'] >= second_last_segment['start'] and last_segment['end'] <= second_last_segment['end']:
|
96 |
+
# Last segment is fully contained in the second-to-last, so don't add it
|
97 |
+
pass
|
98 |
+
else:
|
99 |
+
aggregated_segments.append(last_segment)
|
100 |
+
else:
|
101 |
+
# If aggregated_segments is empty, add the last segment
|
102 |
+
aggregated_segments.append(last_segment)
|
103 |
+
|
104 |
+
return aggregated_segments
|
105 |
+
|
106 |
+
@st.cache_data
|
107 |
+
def split_audio_by_vad(audio_data: bytes, ext: str, _vad_model, sensitivity: float, return_seconds: bool = True):
|
108 |
+
if not audio_data:
|
109 |
+
st.error("No audio data received.")
|
110 |
+
return []
|
111 |
+
|
112 |
+
try:
|
113 |
+
audio = pydub.AudioSegment.from_file(io.BytesIO(audio_data), format=ext)
|
114 |
+
|
115 |
+
# VAD parameters
|
116 |
+
rate = audio.frame_rate
|
117 |
+
window_size_samples = int(512 + (1536 - 512) * (1 - sensitivity))
|
118 |
+
speech_threshold = 0.5 + (0.95 - 0.5) * sensitivity
|
119 |
+
|
120 |
+
# Convert audio to numpy array for VAD
|
121 |
+
samples = np.array(audio.get_array_of_samples())
|
122 |
+
|
123 |
+
# Get speech timestamps
|
124 |
+
speech_timestamps = get_speech_timestamps(
|
125 |
+
samples,
|
126 |
+
_vad_model,
|
127 |
+
sampling_rate=rate,
|
128 |
+
return_seconds=return_seconds,
|
129 |
+
window_size_samples=window_size_samples,
|
130 |
+
threshold=speech_threshold,
|
131 |
+
)
|
132 |
+
|
133 |
+
if not speech_timestamps:
|
134 |
+
st.warning("No speech segments detected.")
|
135 |
+
return []
|
136 |
+
|
137 |
+
# rectify timestamps
|
138 |
+
speech_timestamps[0]["start"] = 0.
|
139 |
+
speech_timestamps[-1]['end'] = audio.duration_seconds
|
140 |
+
for i, chunk in enumerate(speech_timestamps[1:], start=1):
|
141 |
+
chunk["start"] = speech_timestamps[i-1]['end']
|
142 |
+
|
143 |
+
# Aggregate segments into ~30 second chunks
|
144 |
+
aggregated_segments = aggregate_speech_segments(speech_timestamps, max_duration=30)
|
145 |
+
|
146 |
+
if not aggregated_segments:
|
147 |
+
return []
|
148 |
+
|
149 |
+
# Create audio chunks based on timestamps
|
150 |
+
chunks = []
|
151 |
+
for segment in aggregated_segments:
|
152 |
+
start_ms = int(segment['start'] * 1000)
|
153 |
+
end_ms = int(segment['end'] * 1000)
|
154 |
+
chunk = audio[start_ms:end_ms]
|
155 |
+
|
156 |
+
# Export chunk to bytes
|
157 |
+
chunk_io = io.BytesIO()
|
158 |
+
chunk.export(chunk_io, format=ext)
|
159 |
+
chunk_data = chunk_io.getvalue() # Get bytes directly
|
160 |
+
|
161 |
+
chunks.append({
|
162 |
+
'data': chunk_data,
|
163 |
+
'start': segment['start'],
|
164 |
+
'end': segment['end']
|
165 |
+
})
|
166 |
+
chunk_io.close() # Close the BytesIO object after getting the value
|
167 |
+
|
168 |
+
return chunks
|
169 |
+
except Exception as e:
|
170 |
+
st.error(f"Error processing audio in split_audio_by_vad: {str(e)}")
|
171 |
+
return []
|
172 |
+
finally:
|
173 |
+
# Explicitly release pydub resources to prevent memory issues
|
174 |
+
if 'audio' in locals():
|
175 |
+
del audio
|
176 |
+
if 'samples' in locals():
|
177 |
+
del samples
|
178 |
+
|
179 |
+
@st.cache_data
|
180 |
+
def transcribe_batch(batch, _transcriber, language=None):
|
181 |
+
transcriptions = []
|
182 |
+
for i, chunk_data in enumerate(batch):
|
183 |
+
try:
|
184 |
+
generate_kwargs = {
|
185 |
+
"task": "transcribe",
|
186 |
+
"return_timestamps": True
|
187 |
+
}
|
188 |
+
if language:
|
189 |
+
generate_kwargs["language"] = language
|
190 |
+
|
191 |
+
transcription = _transcriber(
|
192 |
+
chunk_data['data'],
|
193 |
+
generate_kwargs=generate_kwargs
|
194 |
+
)
|
195 |
+
transcriptions.append({
|
196 |
+
'text': transcription["text"],
|
197 |
+
'start': chunk_data['start'],
|
198 |
+
'end': chunk_data['end']}
|
199 |
+
)
|
200 |
+
except Exception as e:
|
201 |
+
st.error(f"Error transcribing chunk {i}: {str(e)}")
|
202 |
+
return []
|
203 |
+
return transcriptions
|
204 |
+
|
205 |
+
# --- Streamlit App ---
|
206 |
+
def setup_ui():
|
207 |
+
st.title("YouTube Video Transcriber")
|
208 |
+
video_url = st.text_input("YouTube Video Link:")
|
209 |
+
language = st.text_input("Language (two-letter code, e.g., 'en', 'es', leave empty for auto-detection):", max_chars=2)
|
210 |
+
batch_size = st.number_input("Batch Size", min_value=1, max_value=10, value=2) # Batch size selection
|
211 |
+
transcribe_button = st.button("Transcribe")
|
212 |
+
return video_url, language,batch_size, transcribe_button
|
213 |
+
|
214 |
+
@st.cache_resource
|
215 |
+
def initialize_models():
|
216 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
217 |
+
transcriber = load_transcriber(device)
|
218 |
+
vad_model = load_vad_model()
|
219 |
+
return transcriber, vad_model
|
220 |
+
|
221 |
+
def process_transcription(video_url, vad_sensitivity, batch_size, transcriber, vad_model, language=None):
|
222 |
+
transcription_output = st.empty()
|
223 |
+
audio_data, ext = download_and_convert_audio(video_url)
|
224 |
+
if not audio_data:
|
225 |
+
return
|
226 |
+
|
227 |
+
chunks = split_audio_by_vad(audio_data, ext, vad_model, vad_sensitivity)
|
228 |
+
if not chunks:
|
229 |
+
return
|
230 |
+
|
231 |
+
total_chunks = len(chunks)
|
232 |
+
transcriptions = []
|
233 |
+
for i in range(0, total_chunks, batch_size):
|
234 |
+
batch = chunks[i:i + batch_size]
|
235 |
+
batch_transcriptions = transcribe_batch(batch, transcriber, language)
|
236 |
+
transcriptions.extend(batch_transcriptions)
|
237 |
+
display_transcription(transcriptions, transcription_output)
|
238 |
+
|
239 |
+
st.success("Transcription complete!")
|
240 |
+
|
241 |
+
def display_transcription(transcriptions, output_area):
|
242 |
+
full_transcription = ""
|
243 |
+
for chunk in transcriptions:
|
244 |
+
start_time = format_seconds(chunk['start'])
|
245 |
+
end_time = format_seconds(chunk['end'])
|
246 |
+
full_transcription += f"[{start_time} - {end_time}]: {chunk['text'].strip()}\n\n"
|
247 |
+
output_area.text_area("Transcription:", value=full_transcription, height=300, key=random.random())
|
248 |
+
|
249 |
+
def format_seconds(seconds):
|
250 |
+
"""Formats seconds into HH:MM:SS string."""
|
251 |
+
minutes, seconds = divmod(seconds, 60)
|
252 |
+
hours, minutes = divmod(minutes, 60)
|
253 |
+
return f"{int(hours):02}:{int(minutes):02}:{int(seconds):02}"
|
254 |
+
|
255 |
+
def main():
|
256 |
+
transcriber, vad_model = initialize_models()
|
257 |
+
video_url, language, batch_size, transcribe_button = setup_ui()
|
258 |
+
if transcribe_button:
|
259 |
+
if not video_url:
|
260 |
+
st.error("Please enter a YouTube video link.")
|
261 |
+
return
|
262 |
+
process_transcription(video_url, VAD_SENSITIVITY, batch_size, transcriber, vad_model, language)
|
263 |
+
|
264 |
+
if __name__ == "__main__":
|
265 |
+
main()
|
screenshot.png
ADDED
![]() |