Update app.py
Browse files
app.py
CHANGED
@@ -1,26 +1,31 @@
|
|
1 |
-
# # Set your Groq API key here or use environment variable
|
2 |
-
# GROQ_API_TOKEN = os.getenv("groq_api")
|
3 |
-
# client = Groq(api_key=GROQ_API_TOKEN)
|
4 |
-
|
5 |
import os
|
6 |
import ffmpeg
|
7 |
import whisper
|
8 |
import streamlit as st
|
9 |
from groq import Groq
|
10 |
|
11 |
-
# Set the title and description
|
12 |
-
st.
|
13 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
# Retrieve the API key from environment variables or Streamlit secrets
|
16 |
GROQ_API_KEY = os.getenv("GROQ_API_KEY") or st.secrets["GROQ_API_KEY"]
|
17 |
os.environ["GROQ_API_KEY"] = GROQ_API_KEY
|
18 |
|
19 |
-
# Create a temporary directory
|
20 |
temp_dir = "temp"
|
21 |
os.makedirs(temp_dir, exist_ok=True)
|
22 |
|
23 |
-
#
|
|
|
24 |
uploaded_file = st.file_uploader("Choose an audio or video file...", type=["mp4", "mov", "avi", "mkv", "wav", "mp3"])
|
25 |
|
26 |
# Function to extract audio from video
|
@@ -30,13 +35,13 @@ def extract_audio(video_path, audio_path="temp/temp_audio.wav"):
|
|
30 |
# Run ffmpeg command with stderr capture for better error handling
|
31 |
ffmpeg.input(video_path).output(audio_path).run(overwrite_output=True, capture_stdout=True, capture_stderr=True)
|
32 |
except ffmpeg.Error as e:
|
33 |
-
st.error("
|
34 |
return audio_path
|
35 |
|
36 |
-
# Function to transcribe audio
|
37 |
def transcribe_audio(audio_path):
|
38 |
"""Transcribes audio to text using Whisper model."""
|
39 |
-
model = whisper.load_model("base")
|
40 |
result = model.transcribe(audio_path)
|
41 |
return result["text"]
|
42 |
|
@@ -51,46 +56,153 @@ def summarize_text(text):
|
|
51 |
summary = response.choices[0].message.content
|
52 |
return summary
|
53 |
|
54 |
-
#
|
55 |
def process_media(media_file):
|
56 |
-
"""Processes audio or video: extracts audio, transcribes it, and summarizes the transcription."""
|
57 |
# Save the uploaded file to a temporary path
|
58 |
temp_file_path = os.path.join(temp_dir, media_file.name)
|
59 |
with open(temp_file_path, "wb") as f:
|
60 |
f.write(media_file.getbuffer())
|
61 |
|
62 |
-
# Determine if the file is a video or audio
|
63 |
if media_file.name.endswith(('.mp4', '.mov', '.avi', '.mkv')):
|
64 |
-
|
65 |
audio_path = extract_audio(temp_file_path)
|
66 |
else:
|
67 |
-
audio_path = temp_file_path # If
|
68 |
|
69 |
-
#
|
70 |
-
|
|
|
|
|
71 |
st.write("### Transcription:")
|
72 |
st.write(transcription)
|
73 |
|
74 |
-
#
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
|
|
|
|
|
|
80 |
os.remove(temp_file_path)
|
81 |
if media_file.name.endswith(('.mp4', '.mov', '.avi', '.mkv')):
|
82 |
os.remove(audio_path)
|
83 |
|
84 |
-
# Run the app
|
85 |
if uploaded_file is not None:
|
|
|
86 |
process_media(uploaded_file)
|
87 |
else:
|
88 |
-
st.warning("Please upload
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
|
92 |
|
93 |
|
|
|
94 |
|
95 |
|
96 |
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import ffmpeg
|
3 |
import whisper
|
4 |
import streamlit as st
|
5 |
from groq import Groq
|
6 |
|
7 |
+
# Set the app title and description with styling
|
8 |
+
st.set_page_config(page_title="Audio/Video Transcription & Summarization", page_icon="🎙️")
|
9 |
+
st.title("🎙️ Audio/Video Transcription & Summarization")
|
10 |
+
st.write("Easily upload an audio or video file to get a transcription and a quick summary.")
|
11 |
+
|
12 |
+
# Add a sidebar for settings and instructions
|
13 |
+
with st.sidebar:
|
14 |
+
st.header("Settings")
|
15 |
+
st.write("Configure app preferences here.")
|
16 |
+
enable_summary = st.checkbox("Enable Summarization", value=True)
|
17 |
+
st.info("Note: Summarization uses the Groq API.")
|
18 |
|
19 |
# Retrieve the API key from environment variables or Streamlit secrets
|
20 |
GROQ_API_KEY = os.getenv("GROQ_API_KEY") or st.secrets["GROQ_API_KEY"]
|
21 |
os.environ["GROQ_API_KEY"] = GROQ_API_KEY
|
22 |
|
23 |
+
# Create a temporary directory
|
24 |
temp_dir = "temp"
|
25 |
os.makedirs(temp_dir, exist_ok=True)
|
26 |
|
27 |
+
# Display file uploader with improved layout and style
|
28 |
+
st.subheader("Upload Audio/Video File")
|
29 |
uploaded_file = st.file_uploader("Choose an audio or video file...", type=["mp4", "mov", "avi", "mkv", "wav", "mp3"])
|
30 |
|
31 |
# Function to extract audio from video
|
|
|
35 |
# Run ffmpeg command with stderr capture for better error handling
|
36 |
ffmpeg.input(video_path).output(audio_path).run(overwrite_output=True, capture_stdout=True, capture_stderr=True)
|
37 |
except ffmpeg.Error as e:
|
38 |
+
st.error("Error processing file with FFmpeg: " + e.stderr.decode())
|
39 |
return audio_path
|
40 |
|
41 |
+
# Function to transcribe audio using Whisper model
|
42 |
def transcribe_audio(audio_path):
|
43 |
"""Transcribes audio to text using Whisper model."""
|
44 |
+
model = whisper.load_model("base")
|
45 |
result = model.transcribe(audio_path)
|
46 |
return result["text"]
|
47 |
|
|
|
56 |
summary = response.choices[0].message.content
|
57 |
return summary
|
58 |
|
59 |
+
# Main processing function with progress indicators
|
60 |
def process_media(media_file):
|
61 |
+
"""Processes audio or video: extracts audio, transcribes it, and summarizes the transcription if enabled."""
|
62 |
# Save the uploaded file to a temporary path
|
63 |
temp_file_path = os.path.join(temp_dir, media_file.name)
|
64 |
with open(temp_file_path, "wb") as f:
|
65 |
f.write(media_file.getbuffer())
|
66 |
|
67 |
+
# Determine if the file is a video or audio
|
68 |
if media_file.name.endswith(('.mp4', '.mov', '.avi', '.mkv')):
|
69 |
+
st.info("Extracting audio from video...")
|
70 |
audio_path = extract_audio(temp_file_path)
|
71 |
else:
|
72 |
+
audio_path = temp_file_path # If already audio, use it as is
|
73 |
|
74 |
+
# Transcribe audio to text with progress spinner
|
75 |
+
with st.spinner("Transcribing audio..."):
|
76 |
+
transcription = transcribe_audio(audio_path)
|
77 |
+
st.success("Transcription completed!")
|
78 |
st.write("### Transcription:")
|
79 |
st.write(transcription)
|
80 |
|
81 |
+
# Summarize transcription if enabled
|
82 |
+
if enable_summary:
|
83 |
+
with st.spinner("Generating summary..."):
|
84 |
+
summary = summarize_text(transcription)
|
85 |
+
st.success("Summary generated!")
|
86 |
+
st.write("### Summary:")
|
87 |
+
st.write(summary)
|
88 |
+
|
89 |
+
# Cleanup temporary files
|
90 |
os.remove(temp_file_path)
|
91 |
if media_file.name.endswith(('.mp4', '.mov', '.avi', '.mkv')):
|
92 |
os.remove(audio_path)
|
93 |
|
94 |
+
# Run the app and handle file upload state
|
95 |
if uploaded_file is not None:
|
96 |
+
st.info("Processing your file...")
|
97 |
process_media(uploaded_file)
|
98 |
else:
|
99 |
+
st.warning("Please upload an audio or video file to begin.")
|
100 |
+
|
101 |
+
|
102 |
+
|
103 |
+
|
104 |
+
|
105 |
+
|
106 |
+
|
107 |
+
|
108 |
+
|
109 |
+
|
110 |
+
|
111 |
+
|
112 |
+
|
113 |
+
# # # Set your Groq API key here or use environment variable
|
114 |
+
# # GROQ_API_TOKEN = os.getenv("groq_api")
|
115 |
+
# # client = Groq(api_key=GROQ_API_TOKEN)
|
116 |
+
|
117 |
+
# import os
|
118 |
+
# import ffmpeg
|
119 |
+
# import whisper
|
120 |
+
# import streamlit as st
|
121 |
+
# from groq import Groq
|
122 |
+
|
123 |
+
# # Set the title and description of the app
|
124 |
+
# st.title("Audio/Video Transcription and Summarization")
|
125 |
+
# st.write("Upload your audio or video file, and this app will transcribe the audio and provide a summary of the transcription.")
|
126 |
+
|
127 |
+
# # Retrieve the API key from environment variables or Streamlit secrets
|
128 |
+
# GROQ_API_KEY = os.getenv("GROQ_API_KEY") or st.secrets["GROQ_API_KEY"]
|
129 |
+
# os.environ["GROQ_API_KEY"] = GROQ_API_KEY
|
130 |
+
|
131 |
+
# # Create a temporary directory if it does not exist
|
132 |
+
# temp_dir = "temp"
|
133 |
+
# os.makedirs(temp_dir, exist_ok=True)
|
134 |
+
|
135 |
+
# # Upload the audio or video file
|
136 |
+
# uploaded_file = st.file_uploader("Choose an audio or video file...", type=["mp4", "mov", "avi", "mkv", "wav", "mp3"])
|
137 |
+
|
138 |
+
# # Function to extract audio from video
|
139 |
+
# def extract_audio(video_path, audio_path="temp/temp_audio.wav"):
|
140 |
+
# """Extracts audio from video."""
|
141 |
+
# try:
|
142 |
+
# # Run ffmpeg command with stderr capture for better error handling
|
143 |
+
# ffmpeg.input(video_path).output(audio_path).run(overwrite_output=True, capture_stdout=True, capture_stderr=True)
|
144 |
+
# except ffmpeg.Error as e:
|
145 |
+
# st.error("FFmpeg error encountered: " + e.stderr.decode())
|
146 |
+
# return audio_path
|
147 |
+
|
148 |
+
# # Function to transcribe audio to text using Whisper model
|
149 |
+
# def transcribe_audio(audio_path):
|
150 |
+
# """Transcribes audio to text using Whisper model."""
|
151 |
+
# model = whisper.load_model("base") # Load the Whisper model
|
152 |
+
# result = model.transcribe(audio_path)
|
153 |
+
# return result["text"]
|
154 |
+
|
155 |
+
# # Function to summarize text using Groq API
|
156 |
+
# def summarize_text(text):
|
157 |
+
# """Summarizes text using Groq API."""
|
158 |
+
# client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
|
159 |
+
# response = client.chat.completions.create(
|
160 |
+
# messages=[{"role": "user", "content": f"Summarize the following text: {text}"}],
|
161 |
+
# model="llama3-8b-8192"
|
162 |
+
# )
|
163 |
+
# summary = response.choices[0].message.content
|
164 |
+
# return summary
|
165 |
+
|
166 |
+
# # Complete function to process audio or video
|
167 |
+
# def process_media(media_file):
|
168 |
+
# """Processes audio or video: extracts audio, transcribes it, and summarizes the transcription."""
|
169 |
+
# # Save the uploaded file to a temporary path
|
170 |
+
# temp_file_path = os.path.join(temp_dir, media_file.name)
|
171 |
+
# with open(temp_file_path, "wb") as f:
|
172 |
+
# f.write(media_file.getbuffer())
|
173 |
+
|
174 |
+
# # Determine if the file is a video or audio based on the file extension
|
175 |
+
# if media_file.name.endswith(('.mp4', '.mov', '.avi', '.mkv')):
|
176 |
+
# # Step 1: Extract audio from video
|
177 |
+
# audio_path = extract_audio(temp_file_path)
|
178 |
+
# else:
|
179 |
+
# audio_path = temp_file_path # If it's already audio, use it as is
|
180 |
+
|
181 |
+
# # Step 2: Transcribe audio to text
|
182 |
+
# transcription = transcribe_audio(audio_path)
|
183 |
+
# st.write("### Transcription:")
|
184 |
+
# st.write(transcription)
|
185 |
+
|
186 |
+
# # Step 3: Summarize transcription
|
187 |
+
# summary = summarize_text(transcription)
|
188 |
+
# st.write("### Summary:")
|
189 |
+
# st.write(summary)
|
190 |
+
|
191 |
+
# # Clean up temporary files if needed
|
192 |
+
# os.remove(temp_file_path)
|
193 |
+
# if media_file.name.endswith(('.mp4', '.mov', '.avi', '.mkv')):
|
194 |
+
# os.remove(audio_path)
|
195 |
|
196 |
+
# # Run the app
|
197 |
+
# if uploaded_file is not None:
|
198 |
+
# process_media(uploaded_file)
|
199 |
+
# else:
|
200 |
+
# st.warning("Please upload a file.")
|
201 |
|
202 |
|
203 |
|
204 |
|
205 |
+
# ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
|
206 |
|
207 |
|
208 |
|