Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,83 +1,96 @@
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
|
|
|
|
2 |
import streamlit as st
|
3 |
-
from sentence_transformers import SentenceTransformer, util
|
4 |
from groq import Groq
|
5 |
-
from PyPDF2 import PdfReader
|
6 |
-
|
7 |
-
# Set your Groq API key here or use environment variable
|
8 |
-
GROQ_API_TOKEN = os.getenv("groq_api")
|
9 |
-
client = Groq(api_key=GROQ_API_TOKEN)
|
10 |
-
|
11 |
-
# Initialize the SentenceTransformer model for embeddings
|
12 |
-
retriever = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
13 |
-
|
14 |
-
# Knowledge base (documents) and embeddings
|
15 |
-
documents = []
|
16 |
-
document_embeddings = None
|
17 |
-
|
18 |
-
# Function to retrieve top relevant document
|
19 |
-
def retrieve(query, top_k=3): # Retrieve top 3 relevant documents
|
20 |
-
if document_embeddings is None:
|
21 |
-
return None
|
22 |
-
query_embedding = retriever.encode(query, convert_to_tensor=True)
|
23 |
-
hits = util.semantic_search(query_embedding, document_embeddings, top_k=top_k)
|
24 |
-
top_docs = [documents[hit['corpus_id']] for hit in hits[0]]
|
25 |
-
return ' '.join(top_docs) if hits[0] else None # Concatenate the top documents
|
26 |
-
|
27 |
-
# Function to generate response using Groq
|
28 |
-
def generate_response(query, context):
|
29 |
-
# Limit context size to prevent exceeding token limits
|
30 |
-
max_context_length = 200 # Adjust this number based on your needs
|
31 |
-
if len(context.split()) > max_context_length:
|
32 |
-
context = ' '.join(context.split()[:max_context_length]) # Truncate context to the first N words
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
response = client.chat.completions.create(
|
35 |
-
messages=[{
|
36 |
-
|
37 |
-
"content": f"Context: {context}\nQuestion: {query}\nAnswer:"
|
38 |
-
}],
|
39 |
-
model="gemma2-9b-it"
|
40 |
)
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
#
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
document_embeddings = retriever.encode(documents, convert_to_tensor=True)
|
57 |
-
|
58 |
-
# Streamlit app layout
|
59 |
-
st.title("RAG-based PDF Question Answering App")
|
60 |
-
st.write("Upload a PDF, ask questions based on its content, and get answers!")
|
61 |
-
|
62 |
-
# Upload PDF file
|
63 |
-
uploaded_file = st.file_uploader("Upload a PDF file", type="pdf")
|
64 |
-
if uploaded_file:
|
65 |
-
pdf_text = extract_text_from_pdf(uploaded_file)
|
66 |
-
if pdf_text:
|
67 |
-
update_knowledge_base(pdf_text)
|
68 |
-
st.success("PDF content successfully added to the knowledge base.")
|
69 |
-
else:
|
70 |
-
st.warning("No text could be extracted from the PDF.")
|
71 |
-
|
72 |
-
# Question input
|
73 |
-
question = st.text_input("Enter your question:")
|
74 |
-
if question:
|
75 |
-
retrieved_context = retrieve(question)
|
76 |
-
if retrieved_context:
|
77 |
-
answer = generate_response(question, retrieved_context)
|
78 |
-
st.write("Answer:", answer)
|
79 |
else:
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
|
83 |
|
|
|
1 |
+
# # Set your Groq API key here or use environment variable
|
2 |
+
# GROQ_API_TOKEN = os.getenv("groq_api")
|
3 |
+
# client = Groq(api_key=GROQ_API_TOKEN)
|
4 |
+
|
5 |
import os
|
6 |
+
import ffmpeg
|
7 |
+
import whisper
|
8 |
import streamlit as st
|
|
|
9 |
from groq import Groq
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
+
# Set the title and description of the app
|
12 |
+
st.title("Audio/Video Transcription and Summarization")
|
13 |
+
st.write("Upload your audio or video file, and this app will transcribe the audio and provide a summary of the transcription.")
|
14 |
+
|
15 |
+
# Retrieve the API key from environment variables or Streamlit secrets
|
16 |
+
GROQ_API_KEY = os.getenv("GROQ_API_KEY") or st.secrets["GROQ_API_KEY"]
|
17 |
+
os.environ["GROQ_API_KEY"] = GROQ_API_KEY
|
18 |
+
|
19 |
+
# Create a temporary directory if it does not exist
|
20 |
+
temp_dir = "temp"
|
21 |
+
os.makedirs(temp_dir, exist_ok=True)
|
22 |
+
|
23 |
+
# Upload the audio or video file
|
24 |
+
uploaded_file = st.file_uploader("Choose an audio or video file...", type=["mp4", "mov", "avi", "mkv", "wav", "mp3"])
|
25 |
+
|
26 |
+
# Function to extract audio from video
|
27 |
+
def extract_audio(video_path, audio_path="temp/temp_audio.wav"):
|
28 |
+
"""Extracts audio from video."""
|
29 |
+
try:
|
30 |
+
# Run ffmpeg command with stderr capture for better error handling
|
31 |
+
ffmpeg.input(video_path).output(audio_path).run(overwrite_output=True, capture_stdout=True, capture_stderr=True)
|
32 |
+
except ffmpeg.Error as e:
|
33 |
+
st.error("FFmpeg error encountered: " + e.stderr.decode())
|
34 |
+
return audio_path
|
35 |
+
|
36 |
+
# Function to transcribe audio to text using Whisper model
|
37 |
+
def transcribe_audio(audio_path):
|
38 |
+
"""Transcribes audio to text using Whisper model."""
|
39 |
+
model = whisper.load_model("base") # Load the Whisper model
|
40 |
+
result = model.transcribe(audio_path)
|
41 |
+
return result["text"]
|
42 |
+
|
43 |
+
# Function to summarize text using Groq API
|
44 |
+
def summarize_text(text):
|
45 |
+
"""Summarizes text using Groq API."""
|
46 |
+
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
|
47 |
response = client.chat.completions.create(
|
48 |
+
messages=[{"role": "user", "content": f"Summarize the following text: {text}"}],
|
49 |
+
model="llama3-8b-8192"
|
|
|
|
|
|
|
50 |
)
|
51 |
+
summary = response.choices[0].message.content
|
52 |
+
return summary
|
53 |
+
|
54 |
+
# Complete function to process audio or video
|
55 |
+
def process_media(media_file):
|
56 |
+
"""Processes audio or video: extracts audio, transcribes it, and summarizes the transcription."""
|
57 |
+
# Save the uploaded file to a temporary path
|
58 |
+
temp_file_path = os.path.join(temp_dir, media_file.name)
|
59 |
+
with open(temp_file_path, "wb") as f:
|
60 |
+
f.write(media_file.getbuffer())
|
61 |
+
|
62 |
+
# Determine if the file is a video or audio based on the file extension
|
63 |
+
if media_file.name.endswith(('.mp4', '.mov', '.avi', '.mkv')):
|
64 |
+
# Step 1: Extract audio from video
|
65 |
+
audio_path = extract_audio(temp_file_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
else:
|
67 |
+
audio_path = temp_file_path # If it's already audio, use it as is
|
68 |
+
|
69 |
+
# Step 2: Transcribe audio to text
|
70 |
+
transcription = transcribe_audio(audio_path)
|
71 |
+
st.write("### Transcription:")
|
72 |
+
st.write(transcription)
|
73 |
+
|
74 |
+
# Step 3: Summarize transcription
|
75 |
+
summary = summarize_text(transcription)
|
76 |
+
st.write("### Summary:")
|
77 |
+
st.write(summary)
|
78 |
+
|
79 |
+
# Clean up temporary files if needed
|
80 |
+
os.remove(temp_file_path)
|
81 |
+
if media_file.name.endswith(('.mp4', '.mov', '.avi', '.mkv')):
|
82 |
+
os.remove(audio_path)
|
83 |
+
|
84 |
+
# Run the app
|
85 |
+
if uploaded_file is not None:
|
86 |
+
process_media(uploaded_file)
|
87 |
+
else:
|
88 |
+
st.warning("Please upload a file.")
|
89 |
+
|
90 |
+
|
91 |
+
|
92 |
+
|
93 |
+
|
94 |
|
95 |
|
96 |
|