File size: 8,312 Bytes
dea4744
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b19d492
dea4744
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7731867
 
dea4744
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ab8bf1
dea4744
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
297b140
7731867
 
 
 
 
 
 
 
 
 
 
 
 
 
dea4744
 
 
 
 
 
 
 
 
 
 
 
297b140
 
 
dea4744
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
"""PaliGemma demo gradio app."""

import datetime
import functools
import glob
import json
import logging
import os
import time

import gradio as gr
import PIL.Image
import gradio_helpers
import models
import paligemma_parse

INTRO_TEXT = """🤲 PaliGemma demo\n\n
| [Paper](https://arxiv.org/abs/2407.07726)
| [GitHub](https://github.com/google-research/big_vision/blob/main/big_vision/configs/proj/paligemma/README.md) 
| [HF blog post](https://huggingface.co/blog/paligemma) 
| [Google blog post](https://developers.googleblog.com/en/gemma-family-and-toolkit-expansion-io-2024)
| [Vertex AI Model Garden](https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/363) 
| [Demo](https://huggingface.co/spaces/google/paligemma) 
|\n\n
[PaliGemma](https://ai.google.dev/gemma/docs/paligemma) is an open vision-language model by Google, 
inspired by [PaLI-3](https://arxiv.org/abs/2310.09199) and 
built with open components such as the [SigLIP](https://arxiv.org/abs/2303.15343) 
vision model and the [Gemma](https://arxiv.org/abs/2403.08295) language model. PaliGemma is designed as a versatile 
model for transfer to a wide range of vision-language tasks such as image and short video caption, visual question 
answering, text reading, object detection and object segmentation.
\n\n
This space includes models fine-tuned on a mix of downstream tasks. 
See the [blog post](https://huggingface.co/blog/paligemma) and 
[README](https://github.com/google-research/big_vision/blob/main/big_vision/configs/proj/paligemma/README.md) 
for detailed information how to use and fine-tune PaliGemma models.
\n\n
**This is an experimental research model.** Make sure to add appropriate guardrails when using the model for applications.
"""


make_image = lambda value, visible: gr.Image(
    value, label='Image', type='filepath', visible=visible)
make_annotated_image = functools.partial(gr.AnnotatedImage, label='Image')
make_highlighted_text = functools.partial(gr.HighlightedText, label='Output')


# https://coolors.co/4285f4-db4437-f4b400-0f9d58-e48ef1
COLORS = ['#4285f4', '#db4437', '#f4b400', '#0f9d58', '#e48ef1']


@gradio_helpers.synced
def compute(image, prompt, model_name, sampler):
  """Runs model inference."""
  if image is None:
    raise gr.Error('Image required')

  logging.info('prompt="%s"', prompt)

  if isinstance(image, str):
    image = PIL.Image.open(image)
  if gradio_helpers.should_mock():
    logging.warning('Mocking response')
    time.sleep(2.)
    output = paligemma_parse.EXAMPLE_STRING
  else:
    if not model_name:
      raise gr.Error('Models not loaded yet')
    # output = models.generate(model_name, sampler, image, prompt)
    output = 'output'
    logging.info('output="%s"', output)

  width, height = image.size
  objs = paligemma_parse.extract_objs(output, width, height, unique_labels=True)
  labels = set(obj.get('name') for obj in objs if obj.get('name'))
  color_map = {l: COLORS[i % len(COLORS)] for i, l in enumerate(labels)}
  highlighted_text = [(obj['content'], obj.get('name')) for obj in objs]
  annotated_image = (
      image,
      [
          (
              obj['mask'] if obj.get('mask') is not None else obj['xyxy'],
              obj['name'] or '',
          )
          for obj in objs
          if 'mask' in obj or 'xyxy' in obj
      ],
  )
  has_annotations = bool(annotated_image[1])
  return (
      make_highlighted_text(
          highlighted_text, visible=True, color_map=color_map),
      make_image(image, visible=not has_annotations),
      make_annotated_image(
          annotated_image, visible=has_annotations, width=width, height=height,
          color_map=color_map),
  )


def warmup(model_name):
  image = PIL.Image.new('RGB', [1, 1])
  _ = compute(image, '', model_name, 'greedy')


def reset():
  return (
      '', make_highlighted_text('', visible=False),
      make_image(None, visible=True), make_annotated_image(None, visible=False),
  )


def create_app():
  """Creates demo UI."""

  make_model = lambda choices: gr.Dropdown(
      value=(choices + [''])[0],
      choices=choices,
      label='Model',
      visible=bool(choices),
  )
  make_prompt = lambda value, visible=True: gr.Textbox(
      value, label='Prompt', visible=visible)

  with gr.Blocks() as demo:

    ##### Main UI structure.

    gr.Markdown(INTRO_TEXT)
    with gr.Row():
      image = make_image(None, visible=True)  # input
      annotated_image = make_annotated_image(None, visible=False)  # output
      with gr.Column():
        with gr.Row():
          prompt = make_prompt('', visible=True)
        model_info = gr.Markdown(label='Model Info')
        with gr.Row():
          model = make_model([])
          samplers = [
              'greedy', 'nucleus(0.1)', 'nucleus(0.3)', 'temperature(0.5)']
          sampler = gr.Dropdown(
              value=samplers[0], choices=samplers, label='Decoding'
          )
        with gr.Row():
          run = gr.Button('Run', variant='primary')
          clear = gr.Button('Clear')
        highlighted_text = make_highlighted_text('', visible=False)

    ##### UI logic.

    def update_ui(model, prompt):
      prompt = make_prompt(prompt, visible=True)
      model_info = f'Model `{model}` – {models.MODELS_INFO.get(model, "No info.")}'
      return [prompt, model_info]

    gr.on(
        [model.change],
        update_ui,
        [model, prompt],
        [prompt, model_info],
    )

    gr.on(
        [run.click, prompt.submit],
        compute,
        [image, prompt, model, sampler],
        [highlighted_text, image, annotated_image],
    )
    clear.click(
        reset, None, [prompt, highlighted_text, image, annotated_image]
    )

    ##### Examples.

    gr.set_static_paths(['examples/'])
    all_examples = [json.load(open(p)) for p in glob.glob('examples/*.json')]
    logging.info('loaded %d examples', len(all_examples))
    example_image = gr.Image(
        label='Image', visible=False)  # proxy, never visible
    example_model = gr.Text(
        label='Model', visible=False)  # proxy, never visible
    example_prompt = gr.Text(
        label='Prompt', visible=False)  # proxy, never visible
    example_license = gr.Markdown(
        label='Image License', visible=False)  # placeholder, never visible
    gr.Examples(
        examples=[
            [
                f'examples/{ex["name"]}.jpg',
                ex['prompt'],
                ex['model'],
                ex['license'],
            ]
            for ex in all_examples
            if ex['model'] in models.MODELS
        ],
        inputs=[example_image, example_prompt, example_model, example_license],
    )

    ##### Examples UI logic.

    example_image.change(
        lambda image_path: (
            make_image(image_path, visible=True),
            make_annotated_image(None, visible=False),
            make_highlighted_text('', visible=False),
        ),
        example_image,
        [image, annotated_image, highlighted_text],
    )
    def example_model_changed(model):
      if model not in gradio_helpers.get_paths():
        raise gr.Error(f'Model "{model}" not loaded!')
      return model
    example_model.change(example_model_changed, example_model, model)
    example_prompt.change(make_prompt, example_prompt, prompt)

    ##### Status.

    status = gr.Markdown(f'Startup: {datetime.datetime.now()}')
    # gpu_kind = gr.Markdown(f'GPU=?')
    # demo.load(
    #     lambda: [
    #         gradio_helpers.get_status(),
    #         make_model(list(gradio_helpers.get_paths())),
    #     ],
    #     None,
    #     [status, model],
    # )
    # def get_gpu_kind():
    #   device = jax.devices()[0]
    #   if not gradio_helpers.should_mock() and device.platform != 'gpu':
    #     raise gr.Error('GPU not visible to JAX!')
    #   return f'GPU={device.device_kind}'
    # demo.load(get_gpu_kind, None, gpu_kind)

  return demo


if __name__ == '__main__':

  logging.basicConfig(level=logging.INFO,
                      format='%(asctime)s - %(levelname)s - %(message)s')

  for k, v in os.environ.items():
    logging.info('environ["%s"] = %r', k, v)

  # gradio_helpers.set_warmup_function(warmup)
  # for name, (repo, filename) in models.MODELS.items():
  #   gradio_helpers.register_download(name, repo, filename)

  create_app().queue().launch()