paligemma / app.py
abetlen's picture
Update
7731867
raw
history blame
8.32 kB
"""PaliGemma demo gradio app."""
import datetime
import functools
import glob
import json
import logging
import os
import time
import gradio as gr
import PIL.Image
import gradio_helpers
import models
import paligemma_parse
INTRO_TEXT = """🤲 PaliGemma demo\n\n
| [Paper](https://arxiv.org/abs/2407.07726)
| [GitHub](https://github.com/google-research/big_vision/blob/main/big_vision/configs/proj/paligemma/README.md)
| [HF blog post](https://huggingface.co/blog/paligemma)
| [Google blog post](https://developers.googleblog.com/en/gemma-family-and-toolkit-expansion-io-2024)
| [Vertex AI Model Garden](https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/363)
| [Demo](https://huggingface.co/spaces/google/paligemma)
|\n\n
[PaliGemma](https://ai.google.dev/gemma/docs/paligemma) is an open vision-language model by Google,
inspired by [PaLI-3](https://arxiv.org/abs/2310.09199) and
built with open components such as the [SigLIP](https://arxiv.org/abs/2303.15343)
vision model and the [Gemma](https://arxiv.org/abs/2403.08295) language model. PaliGemma is designed as a versatile
model for transfer to a wide range of vision-language tasks such as image and short video caption, visual question
answering, text reading, object detection and object segmentation.
\n\n
This space includes models fine-tuned on a mix of downstream tasks.
See the [blog post](https://huggingface.co/blog/paligemma) and
[README](https://github.com/google-research/big_vision/blob/main/big_vision/configs/proj/paligemma/README.md)
for detailed information how to use and fine-tune PaliGemma models.
\n\n
**This is an experimental research model.** Make sure to add appropriate guardrails when using the model for applications.
"""
make_image = lambda value, visible: gr.Image(
value, label='Image', type='filepath', visible=visible)
make_annotated_image = functools.partial(gr.AnnotatedImage, label='Image')
make_highlighted_text = functools.partial(gr.HighlightedText, label='Output')
# https://coolors.co/4285f4-db4437-f4b400-0f9d58-e48ef1
COLORS = ['#4285f4', '#db4437', '#f4b400', '#0f9d58', '#e48ef1']
@gradio_helpers.synced
def compute(image, prompt, model_name, sampler):
"""Runs model inference."""
if image is None:
raise gr.Error('Image required')
logging.info('prompt="%s"', prompt)
if isinstance(image, str):
image = PIL.Image.open(image)
if gradio_helpers.should_mock():
logging.warning('Mocking response')
time.sleep(2.)
output = paligemma_parse.EXAMPLE_STRING
else:
if not model_name:
raise gr.Error('Models not loaded yet')
# output = models.generate(model_name, sampler, image, prompt)
output = 'output'
logging.info('output="%s"', output)
width, height = image.size
objs = paligemma_parse.extract_objs(output, width, height, unique_labels=True)
labels = set(obj.get('name') for obj in objs if obj.get('name'))
color_map = {l: COLORS[i % len(COLORS)] for i, l in enumerate(labels)}
highlighted_text = [(obj['content'], obj.get('name')) for obj in objs]
annotated_image = (
image,
[
(
obj['mask'] if obj.get('mask') is not None else obj['xyxy'],
obj['name'] or '',
)
for obj in objs
if 'mask' in obj or 'xyxy' in obj
],
)
has_annotations = bool(annotated_image[1])
return (
make_highlighted_text(
highlighted_text, visible=True, color_map=color_map),
make_image(image, visible=not has_annotations),
make_annotated_image(
annotated_image, visible=has_annotations, width=width, height=height,
color_map=color_map),
)
def warmup(model_name):
image = PIL.Image.new('RGB', [1, 1])
_ = compute(image, '', model_name, 'greedy')
def reset():
return (
'', make_highlighted_text('', visible=False),
make_image(None, visible=True), make_annotated_image(None, visible=False),
)
def create_app():
"""Creates demo UI."""
make_model = lambda choices: gr.Dropdown(
value=(choices + [''])[0],
choices=choices,
label='Model',
visible=bool(choices),
)
make_prompt = lambda value, visible=True: gr.Textbox(
value, label='Prompt', visible=visible)
with gr.Blocks() as demo:
##### Main UI structure.
gr.Markdown(INTRO_TEXT)
with gr.Row():
image = make_image(None, visible=True) # input
annotated_image = make_annotated_image(None, visible=False) # output
with gr.Column():
with gr.Row():
prompt = make_prompt('', visible=True)
model_info = gr.Markdown(label='Model Info')
with gr.Row():
model = make_model([])
samplers = [
'greedy', 'nucleus(0.1)', 'nucleus(0.3)', 'temperature(0.5)']
sampler = gr.Dropdown(
value=samplers[0], choices=samplers, label='Decoding'
)
with gr.Row():
run = gr.Button('Run', variant='primary')
clear = gr.Button('Clear')
highlighted_text = make_highlighted_text('', visible=False)
##### UI logic.
def update_ui(model, prompt):
prompt = make_prompt(prompt, visible=True)
model_info = f'Model `{model}` – {models.MODELS_INFO.get(model, "No info.")}'
return [prompt, model_info]
gr.on(
[model.change],
update_ui,
[model, prompt],
[prompt, model_info],
)
gr.on(
[run.click, prompt.submit],
compute,
[image, prompt, model, sampler],
[highlighted_text, image, annotated_image],
)
clear.click(
reset, None, [prompt, highlighted_text, image, annotated_image]
)
##### Examples.
gr.set_static_paths(['examples/'])
all_examples = [json.load(open(p)) for p in glob.glob('examples/*.json')]
logging.info('loaded %d examples', len(all_examples))
example_image = gr.Image(
label='Image', visible=False) # proxy, never visible
example_model = gr.Text(
label='Model', visible=False) # proxy, never visible
example_prompt = gr.Text(
label='Prompt', visible=False) # proxy, never visible
example_license = gr.Markdown(
label='Image License', visible=False) # placeholder, never visible
gr.Examples(
examples=[
[
f'examples/{ex["name"]}.jpg',
ex['prompt'],
ex['model'],
ex['license'],
]
for ex in all_examples
if ex['model'] in models.MODELS
],
inputs=[example_image, example_prompt, example_model, example_license],
)
##### Examples UI logic.
example_image.change(
lambda image_path: (
make_image(image_path, visible=True),
make_annotated_image(None, visible=False),
make_highlighted_text('', visible=False),
),
example_image,
[image, annotated_image, highlighted_text],
)
def example_model_changed(model):
if model not in gradio_helpers.get_paths():
raise gr.Error(f'Model "{model}" not loaded!')
return model
example_model.change(example_model_changed, example_model, model)
example_prompt.change(make_prompt, example_prompt, prompt)
##### Status.
status = gr.Markdown(f'Startup: {datetime.datetime.now()}')
gpu_kind = gr.Markdown(f'GPU=?')
# demo.load(
# lambda: [
# gradio_helpers.get_status(),
# make_model(list(gradio_helpers.get_paths())),
# ],
# None,
# [status, model],
# )
# def get_gpu_kind():
# device = jax.devices()[0]
# if not gradio_helpers.should_mock() and device.platform != 'gpu':
# raise gr.Error('GPU not visible to JAX!')
# return f'GPU={device.device_kind}'
# demo.load(get_gpu_kind, None, gpu_kind)
return demo
if __name__ == '__main__':
logging.basicConfig(level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s')
for k, v in os.environ.items():
logging.info('environ["%s"] = %r', k, v)
gradio_helpers.set_warmup_function(warmup)
for name, (repo, filename, revision) in models.MODELS.items():
gradio_helpers.register_download(name, repo, filename, revision)
create_app().queue().launch()