|
"""Parses PaliGemma output.""" |
|
|
|
import functools |
|
import re |
|
|
|
import flax.linen as nn |
|
import jax |
|
import jax.numpy as jnp |
|
import numpy as np |
|
import PIL.Image |
|
|
|
|
|
EXAMPLE_STRING = '<loc0000><loc0000><loc0930><loc1012> <seg114><seg074><seg106><seg044><seg030><seg027><seg119><seg119><seg120><seg117><seg082><seg082><seg051><seg005><seg125><seg097> wall ; <loc0722><loc0047><loc0895><loc0378> <seg068><seg114><seg014><seg037><seg029><seg063><seg048><seg104><seg010><seg056><seg021><seg056><seg019><seg017><seg102><seg121> car ; <loc0180><loc0596><loc0782><loc0961> <seg026><seg028><seg028><seg026><seg104><seg026><seg029><seg022><seg000><seg068><seg092><seg125><seg003><seg127><seg121><seg043> david bowie ; <loc0234><loc0043><loc0736><loc0289> <seg068><seg008><seg091><seg064><seg007><seg055><seg017><seg090><seg042><seg052><seg068><seg086><seg001><seg014><seg093><seg052> david bowie ; <loc0230><loc0300><loc0736><loc0499> <seg073><seg011><seg114><seg059><seg048><seg097><seg091><seg022><seg007><seg036><seg091><seg022><seg016><seg009><seg003><seg036> david bowie' |
|
|
|
_MODEL_PATH = 'vae-oid.npz' |
|
|
|
_SEGMENT_DETECT_RE = re.compile( |
|
r'(.*?)' + |
|
r'<loc(\d{4})>' * 4 + r'\s*' + |
|
'(?:%s)?' % (r'<seg(\d{3})>' * 16) + |
|
r'\s*([^;<>]+)? ?(?:; )?', |
|
) |
|
|
|
|
|
def _get_params(checkpoint): |
|
"""Converts PyTorch checkpoint to Flax params.""" |
|
|
|
def transp(kernel): |
|
return np.transpose(kernel, (2, 3, 1, 0)) |
|
|
|
def conv(name): |
|
return { |
|
'bias': checkpoint[name + '.bias'], |
|
'kernel': transp(checkpoint[name + '.weight']), |
|
} |
|
|
|
def resblock(name): |
|
return { |
|
'Conv_0': conv(name + '.0'), |
|
'Conv_1': conv(name + '.2'), |
|
'Conv_2': conv(name + '.4'), |
|
} |
|
|
|
return { |
|
'_embeddings': checkpoint['_vq_vae._embedding'], |
|
'Conv_0': conv('decoder.0'), |
|
'ResBlock_0': resblock('decoder.2.net'), |
|
'ResBlock_1': resblock('decoder.3.net'), |
|
'ConvTranspose_0': conv('decoder.4'), |
|
'ConvTranspose_1': conv('decoder.6'), |
|
'ConvTranspose_2': conv('decoder.8'), |
|
'ConvTranspose_3': conv('decoder.10'), |
|
'Conv_1': conv('decoder.12'), |
|
} |
|
|
|
|
|
def _quantized_values_from_codebook_indices(codebook_indices, embeddings): |
|
batch_size, num_tokens = codebook_indices.shape |
|
assert num_tokens == 16, codebook_indices.shape |
|
unused_num_embeddings, embedding_dim = embeddings.shape |
|
|
|
encodings = jnp.take(embeddings, codebook_indices.reshape((-1)), axis=0) |
|
encodings = encodings.reshape((batch_size, 4, 4, embedding_dim)) |
|
return encodings |
|
|
|
|
|
@functools.cache |
|
def _get_reconstruct_masks(): |
|
"""Reconstructs masks from codebook indices. |
|
|
|
Returns: |
|
A function that expects indices shaped `[B, 16]` of dtype int32, each |
|
ranging from 0 to 127 (inclusive), and that returns a decoded masks sized |
|
`[B, 64, 64, 1]`, of dtype float32, in range [-1, 1]. |
|
""" |
|
|
|
class ResBlock(nn.Module): |
|
features: int |
|
|
|
@nn.compact |
|
def __call__(self, x): |
|
original_x = x |
|
x = nn.Conv(features=self.features, kernel_size=(3, 3), padding=1)(x) |
|
x = nn.relu(x) |
|
x = nn.Conv(features=self.features, kernel_size=(3, 3), padding=1)(x) |
|
x = nn.relu(x) |
|
x = nn.Conv(features=self.features, kernel_size=(1, 1), padding=0)(x) |
|
return x + original_x |
|
|
|
class Decoder(nn.Module): |
|
"""Upscales quantized vectors to mask.""" |
|
|
|
@nn.compact |
|
def __call__(self, x): |
|
num_res_blocks = 2 |
|
dim = 128 |
|
num_upsample_layers = 4 |
|
|
|
x = nn.Conv(features=dim, kernel_size=(1, 1), padding=0)(x) |
|
x = nn.relu(x) |
|
|
|
for _ in range(num_res_blocks): |
|
x = ResBlock(features=dim)(x) |
|
|
|
for _ in range(num_upsample_layers): |
|
x = nn.ConvTranspose( |
|
features=dim, |
|
kernel_size=(4, 4), |
|
strides=(2, 2), |
|
padding=2, |
|
transpose_kernel=True, |
|
)(x) |
|
x = nn.relu(x) |
|
dim //= 2 |
|
|
|
x = nn.Conv(features=1, kernel_size=(1, 1), padding=0)(x) |
|
|
|
return x |
|
|
|
def reconstruct_masks(codebook_indices): |
|
quantized = _quantized_values_from_codebook_indices( |
|
codebook_indices, params['_embeddings'] |
|
) |
|
return Decoder().apply({'params': params}, quantized) |
|
|
|
with open(_MODEL_PATH, 'rb') as f: |
|
params = _get_params(dict(np.load(f))) |
|
|
|
return jax.jit(reconstruct_masks, backend='cpu') |
|
|
|
|
|
def extract_objs(text, width, height, unique_labels=False): |
|
"""Returns objs for a string with "<loc>" and "<seg>" tokens.""" |
|
objs = [] |
|
seen = set() |
|
while text: |
|
m = _SEGMENT_DETECT_RE.match(text) |
|
if not m: |
|
break |
|
|
|
gs = list(m.groups()) |
|
before = gs.pop(0) |
|
name = gs.pop() |
|
y1, x1, y2, x2 = [int(x) / 1024 for x in gs[:4]] |
|
y1, x1, y2, x2 = map(round, (y1*height, x1*width, y2*height, x2*width)) |
|
|
|
seg_indices = gs[4:20] |
|
if seg_indices[0] is None: |
|
mask = None |
|
else: |
|
seg_indices = np.array([int(x) for x in seg_indices], dtype=np.int32) |
|
m64, = _get_reconstruct_masks()(seg_indices[None])[..., 0] |
|
m64 = np.clip(np.array(m64) * 0.5 + 0.5, 0, 1) |
|
m64 = PIL.Image.fromarray((m64 * 255).astype('uint8')) |
|
mask = np.zeros([height, width]) |
|
if y2 > y1 and x2 > x1: |
|
mask[y1:y2, x1:x2] = np.array(m64.resize([x2 - x1, y2 - y1])) / 255.0 |
|
|
|
content = m.group() |
|
if before: |
|
objs.append(dict(content=before)) |
|
content = content[len(before):] |
|
while unique_labels and name in seen: |
|
name = (name or '') + "'" |
|
seen.add(name) |
|
objs.append(dict( |
|
content=content, xyxy=(x1, y1, x2, y2), mask=mask, name=name)) |
|
text = text[len(before) + len(content):] |
|
|
|
if text: |
|
objs.append(dict(content=text)) |
|
|
|
return objs |
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
print([ |
|
{ |
|
k: (v.shape, v.mean()) if isinstance(v, np.ndarray) else v |
|
for k, v in obj.items() |
|
} |
|
for obj in extract_objs(EXAMPLE_STRING, 100, 200) |
|
]) |
|
|