import gradio as gr from huggingface_hub import InferenceClient import requests from bs4 import BeautifulSoup from bs4.element import Comment def get_text_from_url(url): response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') texts = soup.find_all(text=True) visible_texts = filter(tag_visible, texts) return u"\n".join(t.strip() for t in visible_texts) def tag_visible(element): if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True text_list = [] homepage_url = "https://sites.google.com/view/abhilashnandy/home/" extensions = ["", "pmrf-profile-page"] for ext in extensions: url_text = get_text_from_url(homepage_url+ext) text_list.append(url_text) # Repeat for sub-links if necessary """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ client = InferenceClient("stabilityai/stablelm-2-1_6b-chat")#("stabilityai/stablelm-2-1_6b-chat")#("TheBloke/TinyLlama-1.1B-Chat-v1.0-GPTQ")#("TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF")#("QuantFactory/Meta-Llama-3-8B-Instruct-GGUF")#("HuggingFaceH4/zephyr-7b-beta") SYSTEM_MESSAGE = "You are a QA chatbot to answer queries (in less than 30 words) on my homepage that has the following information -\n\n" + "\n\n".join(text_list) + "\n\n" def respond( message, history: list[tuple[str, str]], system_message=SYSTEM_MESSAGE, max_tokens=80, temperature=0.7, top_p=0.95, ): messages = [{"role": "system", "content": system_message}] for val in history: # if val[0]: if len(val)>=1: messages.append({"role": "user", "content": "Question: "+val[0]}) # if val[1]: if len(val)>=2: messages.append({"role": "assistant", "content": "Answer: "+val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ # initial_message = [("user", "Yo who dis Abhilash?")] markdown_note = "## Might show a tad bit of hallucination!" demo = gr.Blocks() with demo: gr.Markdown(markdown_note) gr.ChatInterface( respond, examples = ["Yo who dis Abhilash?", "What is Abhilash's most recent publication?"], # message=initial_message, additional_inputs=[ # gr.Textbox(value="You are a friendly Chatbot.", label="System message"), # gr.Slider(minimum=1, maximum=8192, value=512, step=1, label="Max new tokens"), # gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), # gr.Slider( # minimum=0.1, # maximum=1.0, # value=0.95, # step=0.05, # label="Top-p (nucleus sampling)", # ), ], # value=initial_message ) if __name__ == "__main__": demo.launch()