abhicake commited on
Commit
e657815
·
verified ·
1 Parent(s): a8546f9

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +50 -0
app.py ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ from sentence_transformers import SentenceTransformer
3
+ from sklearn.metrics.pairwise import cosine_similarity
4
+ import numpy as np
5
+ import gradio as gr
6
+
7
+ # Load the SentenceTransformer model
8
+ model = SentenceTransformer('sentence-transformers/all-mpnet-base-v2')
9
+
10
+ # Load the embeddings from the JSON file
11
+ with open('/content/drive/My Drive/final_data_with_embeddings.json', 'r') as f:
12
+ data = json.load(f)
13
+
14
+ # Function to perform the search
15
+ def search_courses(user_query):
16
+ query_embedding = model.encode(user_query) # Get the embedding for user query
17
+ similarity_scores = [] # Array to store similarity scores
18
+
19
+ # Compare the user query embedding with each stored embedding
20
+ for dets in data:
21
+ embed = np.array(dets['embedding'])
22
+ similarity = cosine_similarity([query_embedding], [embed])
23
+ similarity_scores.append((similarity[0][0], dets))
24
+
25
+ # Sort the similarity scores in descending order
26
+ similarity_scores.sort(key=lambda x: x[0], reverse=True)
27
+
28
+ # Get the top 4 courses
29
+ top_4_dets = [item[1] for item in similarity_scores[:4]]
30
+
31
+ results = []
32
+ for i,det in enumerate(top_4_dets,1):
33
+ course_info = f"{i}. " \
34
+ f"**Category**: {det['Course Category']}\n\n" \
35
+ f"**Course Name**: {det['Course Name']}\n\n" \
36
+ f"**Course URL**: {det['Course Url']}\n\n" \
37
+ f"**Description**: {det['Course Description']}\n\n"
38
+ results.append(course_info)
39
+
40
+ return "\n\n\n".join(results)
41
+
42
+ # Create the Gradio interface
43
+ iface = gr.Interface(fn=search_courses,
44
+ inputs="text",
45
+ outputs="markdown",
46
+ title="Course Search with Sentence Transformers",
47
+ description="Enter a query to find the top 4 most similar courses.")
48
+
49
+ # Launch the Gradio app
50
+ iface.launch()